We extend the Davenport and Erdős construction of normal numbers to the case.
@article{bwmeta1.element.bwnjournal-article-cmv84i2p431bwm, author = {Mordechay Levin and Meir Smorodinsky}, title = {A $$\mathbb{Z}$^{d}$ generalization of the Davenport-Erd\H os construction of normal numbers}, journal = {Colloquium Mathematicae}, volume = {84/85}, year = {2000}, pages = {431-441}, zbl = {1014.11046}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv84i2p431bwm} }
Levin, Mordechay; Smorodinsky, Meir. A $ℤ^{d}$ generalization of the Davenport-Erdős construction of normal numbers. Colloquium Mathematicae, Tome 84/85 (2000) pp. 431-441. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv84i2p431bwm/
[000] [AKS] R. Adler, M. Keane and M. Smorodinsky, A construction of a normal number for the continued fraction transformation, J. Number Theory 13 (1981), 95-105. | Zbl 0448.10050
[001] [B] E. Borel, Les probabilités dénombrables et leurs applications arithmétiques, Rend. Circ. Mat. Palermo 27 (1909), 247-271. | Zbl 40.0283.01
[002] [C] D. J. Champernowne, The construction of decimals normal in the scale ten, J. London Math. Soc. 8 (1933), 254-260. | Zbl 0007.33701
[003] [Ci] J. Cigler, Asymptotische Verteilung reeller Zahlen mod 1, Monatsh. Math. 64 (1960), 201-225. | Zbl 0111.25301
[004] [DE] H. Davenport and P. Erdős, Note on normal numbers, Canad. J. Math. 4 (1953), 58-63.
[005] [DrTi] M. Drmota and R. Tichy, Sequences, Discrepancies and Applications, Lecture Notes in Math. 1651, Springer, 1997.
[006] [KT] P. Kirschenhofer and R. F. Tichy, On uniform distribution of double sequences, Manuscripta Math. 35 (1981), 195-207. | Zbl 0478.10036
[007] [LeSm] M. B. Levin and M. Smorodinsky, On explicit construction of normal lattices, preprint.
[008] [SW] M. Smorodinsky and B. Weiss, Normal sequences for Markov shifts and intrinsically ergodic subshifts, Israel J. Math. 59 (1987), 225-233. | Zbl 0643.10041