Shift invariant measures and simple spectrum
Kłopotowski, A. ; Nadkarni, M.
Colloquium Mathematicae, Tome 84/85 (2000), p. 385-394 / Harvested from The Polish Digital Mathematics Library

We consider some descriptive properties of supports of shift invariant measures on under the assumption that the closed linear span (in L2) of the co-ordinate functions on is all of L2.

Publié le : 2000-01-01
EUDML-ID : urn:eudml:doc:210821
@article{bwmeta1.element.bwnjournal-article-cmv84i2p385bwm,
     author = {A. K\l opotowski and M. Nadkarni},
     title = {Shift invariant measures and simple spectrum},
     journal = {Colloquium Mathematicae},
     volume = {84/85},
     year = {2000},
     pages = {385-394},
     zbl = {0965.60003},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv84i2p385bwm}
}
Kłopotowski, A.; Nadkarni, M. Shift invariant measures and simple spectrum. Colloquium Mathematicae, Tome 84/85 (2000) pp. 385-394. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv84i2p385bwm/

[000] [1] R. C. Cowsik, A. Kłopotowski and M. G. Nadkarni, When is f(x,y) = u(x) + v(y)?, Proc. Indian Acad. Sci. (Math. Sci.) 109 (1999), 57-64. | Zbl 0986.26007

[001] [2] A. Kłopotowski and M. G. Nadkarni, On transformations with simple Lebesgue spectrum, ibid., 47-55. | Zbl 0993.28006

[002] [3] M. Laczkovich, Closed sets without measurable matchings, Proc. Amer. Math. Soc. 103 (1998), 894-896.