We consider some descriptive properties of supports of shift invariant measures on under the assumption that the closed linear span (in ) of the co-ordinate functions on is all of .
@article{bwmeta1.element.bwnjournal-article-cmv84i2p385bwm, author = {A. K\l opotowski and M. Nadkarni}, title = {Shift invariant measures and simple spectrum}, journal = {Colloquium Mathematicae}, volume = {84/85}, year = {2000}, pages = {385-394}, zbl = {0965.60003}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv84i2p385bwm} }
Kłopotowski, A.; Nadkarni, M. Shift invariant measures and simple spectrum. Colloquium Mathematicae, Tome 84/85 (2000) pp. 385-394. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv84i2p385bwm/
[000] [1] R. C. Cowsik, A. Kłopotowski and M. G. Nadkarni, When is f(x,y) = u(x) + v(y)?, Proc. Indian Acad. Sci. (Math. Sci.) 109 (1999), 57-64. | Zbl 0986.26007
[001] [2] A. Kłopotowski and M. G. Nadkarni, On transformations with simple Lebesgue spectrum, ibid., 47-55. | Zbl 0993.28006
[002] [3] M. Laczkovich, Closed sets without measurable matchings, Proc. Amer. Math. Soc. 103 (1998), 894-896.