Remarks on the tightness of cocycles
Aaronson, Jon ; Weiss, Benjamin
Colloquium Mathematicae, Tome 84/85 (2000), p. 363-376 / Harvested from The Polish Digital Mathematics Library

We prove a generalised tightness theorem for cocycles over an ergodic probability preserving transformation with values in Polish topological groups. We also show that subsequence tightness of cocycles over a mixing probability preserving transformation implies tightness. An example shows that this latter result may fail for cocycles over a mildly mixing probability preserving transformation.

Publié le : 2000-01-01
EUDML-ID : urn:eudml:doc:210819
@article{bwmeta1.element.bwnjournal-article-cmv84i2p363bwm,
     author = {Jon Aaronson and Benjamin Weiss},
     title = {Remarks on the tightness of cocycles},
     journal = {Colloquium Mathematicae},
     volume = {84/85},
     year = {2000},
     pages = {363-376},
     zbl = {0980.28010},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv84i2p363bwm}
}
Aaronson, Jon; Weiss, Benjamin. Remarks on the tightness of cocycles. Colloquium Mathematicae, Tome 84/85 (2000) pp. 363-376. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv84i2p363bwm/

[000] [A] J. Aaronson, An Introduction to Infinite Ergodic Theory, Math. Surveys Monogr. 50, Amer. Math. Soc., Providence, RI, 1997. | Zbl 0882.28013

[001] [Br1] R. C. Bradley, On a theorem of K. Schmidt, Statist. Probab. Lett. 23 (1995), 9-12.

[002] [Br2] R. C. Bradley, A 'coboundary' theorem for sums of random variables taking values in a Banach space, Pacific J. Math. 178 (1997), 201-224.

[003] [Br3] R. C. Bradley, A 'multiplicative coboundary' theorem for some sequences of random matrices, J. Theoret. Probab. 9 (1996), 659-678. | Zbl 0870.60028

[004] [Br4] R. C. Bradley, On the dissipation of the partial sums of a stationary strongly mixing sequence, Stochastic Process. Appl. 54 (1994), 281-290. | Zbl 0815.60031

[005] [Cha] R. V. Chacon, Weakly mixing transformations which are not strongly mixing, Proc. Amer. Math. Soc. 22 (1969), 559-562. | Zbl 0186.37203

[006] [Co] J.-P. Conze, Transformations cylindriques et mesures finies invariantes, Ann. Sci. Univ. Clermont Math. 17 (1979), 25-31. | Zbl 0426.28017

[007] [Fr] N. Friedman, Introduction to Ergodic Theory, van Nostrand, New York, 1970.

[008] [F-K] N. Friedman and J. King, Rank one lightly mixing, Israel J. Math. 73 (1991), 281-288. | Zbl 0754.28010

[009] H. Keynes and D. Newton, The structure of ergodic measures for compact group extensions, Israel J. Math. 18 (1974), 363-389. | Zbl 0299.54033

[010] [Lem] M. Lemańczyk, Ergodic compact Abelian group extensions, habilitation thesis, Nicholas Copernicus Univ., Toruń, 1990.

[011] [Leo] V. P. Leonov, On the dispersion of time averages of a stationary random process, Theory Probab. Appl. 6 (1961), 93-101.

[012] C. C. Moore and K. Schmidt, Coboundaries and homomorphisms for nonsingular actions and a problem of H. Helson, Proc. London Math. Soc. 40 (1980), 443-475. | Zbl 0428.28014

[013] [Par] K. R. Parthasarathy, Introduction to Probability and Measure, Springer, New York, 1978.

[014] [Rev] P. Revesz, On a problem of Steinhaus, Acta Math. Acad. Sci. Hungar. 16 (1965), 311-318. | Zbl 0203.19502

[015] [Sch1] K. Schmidt, Cocycles of Ergodic Transformation Groups, Lecture Notes in Math. 1, MacMillan of India, 1977. | Zbl 0421.28017

[016] [Sch2] K. Schmidt, Amenability, Kazhdan's property T, strong ergodicity and invariant means for ergodic group-actions, Ergodic Theory Dynam. Systems 1 (1981), 223-236. | Zbl 0485.28019

[017] [Weil] A. Weil, L'intégration dans les groupes topologiques et ses applications, Actualités Sci. Indust. 869, Hermann, Paris, 1940. | Zbl 0063.08195

[018] [Zim] R. J. Zimmer, On the cohomology of ergodic group actions, Israel J. Math. 35 (1980), 289-300. | Zbl 0442.28026