Isomorphic random Bernoulli shifts
Gundlach, V. ; Ochs, G.
Colloquium Mathematicae, Tome 84/85 (2000), p. 327-344 / Harvested from The Polish Digital Mathematics Library

We develop a relative isomorphism theory for random Bernoulli shifts by showing that any random Bernoulli shifts are relatively isomorphic if and only if they have the same fibre entropy. This allows the identification of random Bernoulli shifts with standard Bernoulli shifts.

Publié le : 2000-01-01
EUDML-ID : urn:eudml:doc:210817
@article{bwmeta1.element.bwnjournal-article-cmv84i2p327bwm,
     author = {V. Gundlach and G. Ochs},
     title = {Isomorphic random Bernoulli shifts},
     journal = {Colloquium Mathematicae},
     volume = {84/85},
     year = {2000},
     pages = {327-344},
     zbl = {0963.37045},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv84i2p327bwm}
}
Gundlach, V.; Ochs, G. Isomorphic random Bernoulli shifts. Colloquium Mathematicae, Tome 84/85 (2000) pp. 327-344. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv84i2p327bwm/

[000] [Bog93] T. Bogenschütz, Equilibrium states for random dynamical systems, PhD thesis, Universität Bremen, 1993. | Zbl 0833.58023

[001] [BG92] T. Bogenschütz and V. M. Gundlach, Symbolic dynamics for expanding random dynamical systems, Random Comput. Dynamics 1 (1992), 219-227. | Zbl 0790.58015

[002] [Con97] N. D. Cong, Topological Dynamics of Random Dynamical Systems, Clarendon Press, Oxford, 1997.

[003] [CFS82] I. P. Cornfeld, S. V. Fomin, and Ya. G. Sinai, Ergodic Theory, Grundlehren Math. Wiss. 245, Springer, New York, 1982.

[004] [Gun99] V. M. Gundlach, Random shifts and matrix products, Habilitationsschrift, 1999.

[005] [GK99] V. M. Gundlach and Y. Kifer, Random hyperbolic systems, in: H. Crauel and V. M. Gundlach (eds.), Stochastic Dynamics, Berlin, Springer, 1999, 117-145. | Zbl 0933.37056

[006] [Kie84] J. Kieffer, A simple development of the Thouvenot relative isomorphism theory, Ann. Probab. 12 (1984), 204-211. | Zbl 0551.28023

[007] [Kif86] Y. Kifer, Ergodic Theory of Random Transformations, Birkhäuser, Boston, 1986.

[008] [Kif96] Y. Kifer, Fractal dimensions and random transformations, Trans. Amer. Math. Soc. 348 (1996), 2003-2038. | Zbl 0874.28009

[009] [Lin77] D. A. Lind, The structure of skew products with ergodic group automorphisms, Israel J. Math. 28 (1977), 205-248. | Zbl 0365.28015

[010] [Orn70] D. Ornstein, Bernoulli shifts with the same entropy are isomorphic, Adv. Math. 4 (1970), 337-352. | Zbl 0197.33502

[011] [Pet83] K. Petersen, Ergodic Theory, Cambridge Univ. Press, Cambridge, 1983.

[012] [Rah78] M. Rahe, Relatively finitely determined implies relatively very weak Bernoulli, Canad. J. Math. 30 (1978), 531-548. | Zbl 0394.28008

[013] [Shi77] P. Shields, Weak and very weak Bernoulli partitions, Monatsh. Math. 84 (1977), 133-142. | Zbl 0388.28017

[014] [Th75a] J.-P. Thouvenot, Quelques propriétés des systèmes dynamiques qui se décomposent en un produit de deux systèmes dont l'un est un schéma de Bernoulli, Israel J. Math. 21 (1975), 177-207. | Zbl 0329.28008

[015] [Th75b] J.-P. Thouvenot, Remarques sur les systèmes dynamiques donnés avec plusieurs facteurs, ibid., 215-232. | Zbl 0331.28012