Residuality of dynamical morphisms
Burton, R. ; Keane, M. ; Serafin, Jacek
Colloquium Mathematicae, Tome 84/85 (2000), p. 307-317 / Harvested from The Polish Digital Mathematics Library

We present a unified approach to the finite generator theorem of Krieger, the homomorphism theorem of Sinai and the isomorphism theorem of Ornstein. We show that in a suitable space of measures those measures which define isomorphisms or respectively homomorphisms form residual subsets.

Publié le : 2000-01-01
EUDML-ID : urn:eudml:doc:210815
@article{bwmeta1.element.bwnjournal-article-cmv84i2p307bwm,
     author = {R. Burton and M. Keane and Jacek Serafin},
     title = {Residuality of dynamical morphisms},
     journal = {Colloquium Mathematicae},
     volume = {84/85},
     year = {2000},
     pages = {307-317},
     zbl = {0963.37007},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv84i2p307bwm}
}
Burton, R.; Keane, M.; Serafin, Jacek. Residuality of dynamical morphisms. Colloquium Mathematicae, Tome 84/85 (2000) pp. 307-317. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv84i2p307bwm/

[000] [1] P. Billingsley, Ergodic Theory and Information, Wiley, New York, 1965. | Zbl 0141.16702

[001] [2] R. Burton and A. Rothstein, Isomorphism theorems in ergodic theory, Technical Report, Oregon State Univ., 1977.

[002] [3] H. Furstenberg, Recurrence in Ergodic Theory and Combinatorial Number Theory, Princeton Univ. Press, Princeton, NJ, 1981. | Zbl 0459.28023

[003] [4] P. Halmos and H. Vaughan, The Marriage Problem, Amer. J. Math.72 (1950), 214-215. | Zbl 0034.29601

[004] [5] K. Jacobs, Lecture Notes on Ergodic Theory, Aarhus Univ., 1962.

[005] [6] J. Kammeyer, The isomorphism theorem for relatively finitely determined n-actions, Israel J. Math.69 (1990), 117-127. | Zbl 0699.28009

[006] [7] M. Keane and J. Serafin, On the countable generator theorem, Fund. Math.157 (1998), 255-259. | Zbl 0915.28008

[007] [8] M. Keane and M. Smorodinsky, Bernoulli schemes of the same entropy are finitarily isomorphic, Ann. of Math.109 (1979), 397-406. | Zbl 0405.28017

[008] [9] W. Krieger, On entropy and generators of measure-% preserving transformations, Trans. Amer. Math. Soc.149 (1970), 453-464. | Zbl 0204.07904

[009] [10] V. A. Rokhlin, Lectures on the entropy theory of measure-preserving transformations, Russian Math. Surveys22 (1967), no. 5, 1-52. | Zbl 0174.45501

[010] [11] D. Ornstein, Bernoulli shifts with the same entropy are isomorphic, Adv. Math.4 (1970), 337-352. | Zbl 0197.33502

[011] [12] D. Ornstein, Ergodic Theory, Randomness and Dynamical Systems, Yale Univ. Press, New Haven, 1974. | Zbl 0296.28016

[012] [13] J. Serafin, Finitary codes and isomorphisms, Ph.D. Thesis, Technische Universiteit Delft, 1996.

[013] [14] Ya. Sinai, A weak isomorphism of transformations with an invariant measure, Dokl. Akad. Nauk SSSR 147 (1962), 797-800 (in Russian).

[014] [15] P. Walters, An Introduction to Ergodic Theory, Springer, 1982. | Zbl 0475.28009