We give a necessary and sufficient condition for the solvability of a generalized cohomology equation, for an ergodic endomorphism of a probability measure space, in the space of measurable complex functions. This generalizes a result obtained in [7].
@article{bwmeta1.element.bwnjournal-article-cmv84i2p279bwm, author = {K. Krzy\.zewski}, title = {A note on a generalized cohomology equation}, journal = {Colloquium Mathematicae}, volume = {84/85}, year = {2000}, pages = {279-283}, zbl = {0990.37002}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv84i2p279bwm} }
Krzyżewski, K. A note on a generalized cohomology equation. Colloquium Mathematicae, Tome 84/85 (2000) pp. 279-283. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv84i2p279bwm/
[000] [1] S. Banach et S. Saks, Sur la convergence forte dans les champs , Studia Math. 2 (1930), 51-57. | Zbl 56.0932.01
[001] [2] N. Dunford and J. T. Schwartz, Linear Operators, Part I: General Theory, Interscience, New York, 1958. | Zbl 0084.10402
[002] [3] K. Krzyżewski, On regularity of measurable solutions of a cohomology equation, Bull. Polish Acad. Sci. Math. 37 (1989), 279-287. | Zbl 0762.58022
[003] [4] K. Krzyżewski, On 4-lacunary sequences generated by ergodic toral endomorphisms, Proc. Amer. Math. Soc. 118 (1993), 469-478. | Zbl 0783.42016
[004] [5] K. Krzyżewski, On 4-lacunary sequences generated by some measure preserving maps, Acta Math. Hungar. 74 (1997), 261-278. | Zbl 0924.28011
[005] [6] K. Krzyżewski, On some Sidon sequences, Internat. J. Bifurcation Chaos 9 (1999), 1785-1793. | Zbl 1089.28500
[006] [7] J. Kwiatkowski, M. Lemańczyk and D. Rudolph, Weak isomorphism of meas- ure-preserving diffeomorphisms, Israel J. Math. 80 (1992), 33-64. | Zbl 0774.28008
[007] [8] F. Riesz and B. Sz.-Nagy, Leçons d'Analyse Fonctionnelle, Akadémiai Kiadó, Budapest, 1952.