Dynamical systems arising from elliptic curves
D'Ambros, P. ; Everest, G. ; Miles, R. ; Ward, T.
Colloquium Mathematicae, Tome 84/85 (2000), p. 95-107 / Harvested from The Polish Digital Mathematics Library

We exhibit a family of dynamical systems arising from rational points on elliptic curves in an attempt to mimic the familiar toral automorphisms. At the non-archimedean primes, a continuous map is constructed on the local elliptic curve whose topological entropy is given by the local canonical height. Also, a precise formula for the periodic points is given. There follows a discussion of how these local results may be glued together to give a map on the adelic curve. We are able to give a map whose entropy is the global canonical height and whose periodic points are counted asymptotically by the real division polynomial (although the archimedean component of the map is artificial). Finally, we set out a precise conjecture about the existence of elliptic dynamical systems and discuss a possible connection with mathematical physics.

Publié le : 2000-01-01
EUDML-ID : urn:eudml:doc:210812
@article{bwmeta1.element.bwnjournal-article-cmv84i1p95bwm,
     author = {P. D'Ambros and G. Everest and R. Miles and T. Ward},
     title = {Dynamical systems arising from elliptic curves},
     journal = {Colloquium Mathematicae},
     volume = {84/85},
     year = {2000},
     pages = {95-107},
     zbl = {0965.37020},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv84i1p95bwm}
}
D'Ambros, P.; Everest, G.; Miles, R.; Ward, T. Dynamical systems arising from elliptic curves. Colloquium Mathematicae, Tome 84/85 (2000) pp. 95-107. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv84i1p95bwm/

[000] [1] R. Adler, A. Konheim and M. McAndrew, Topological entropy, Trans. Amer. Math. Soc. 114 (1965), 309-319. | Zbl 0127.13102

[001] [2] R. Bowen, Entropy for group endomorphisms and homogeneous spaces, ibid. 153 (1971), 401-414. | Zbl 0212.29201

[002] [3] V. Chothi, G. Everest and T. Ward, S-integer dynamical systems: periodic points, J. Reine Angew. Math. 489 (1997), 99-132. | Zbl 0879.58037

[003] [4] S. David, Minorations des formes linéaires de logarithmes elliptiques, Mem. Soc. Math. France 62 (1995).

[004] [5] G. Everest and T. Ward, A dynamical interpretation of the global canonical height on an elliptic curve, Experiment. Math. 7 (1998), 305-316. | Zbl 0927.11009

[005] [6] G. Everest and T. Ward, Heights of Polynomials and Entropy in Algebraic Dynamics, Springer, London, 1999. | Zbl 0919.11064

[006] [7] L. Flatto, J. C. Lagarias and B. Poonen, The zeta function of the beta transformation, Ergodic Theory Dynam. Systems 14 (1994), 237-266. | Zbl 0843.58106

[007] [8] E. Hewitt and K. Ross, Abstract Harmonic Analysis, Springer, New York, 1963. | Zbl 0115.10603

[008] [9] F. Hofbauer, β-shifts have unique maximal measures, Monatsh. Math. 85 (1978), 189-198.

[009] [10] D. A. Lind and T. Ward, Automorphisms of solenoids and p-adic entropy, Ergodic Theory Dynam. Systems 8 (1988), 411-419. | Zbl 0634.22005

[010] [11] W. Parry, On the β-expansions of real numbers, Acta Math. Acad. Sci. Hungar. 11 (1960), 401-416. | Zbl 0099.28103

[011] [12] W. Parry, Representations for real numbers, ibid. 15 (1964), 95-105. | Zbl 0136.35104

[012] [13] A. Rényi, Representations for real numbers and their ergodic properties, ibid. 8 (1957), 477-493. | Zbl 0079.08901

[013] [14] J. F. Ritt, Permutable rational functions, Trans. Amer. Math. Soc. 25 (1923), 399-448. | Zbl 49.0712.02

[014] [15] K. Schmidt, Dynamical Systems of Algebraic Origin, Birkhäuser, Basel, 1995. | Zbl 0833.28001

[015] [16] J. H. Silverman, The Arithmetic of Elliptic Curves, Springer, New York, 1986. | Zbl 0585.14026

[016] [17] J. H. Silverman, Computing heights on elliptic curves, Math. Comp. 51 (1988), 339-358. | Zbl 0656.14016

[017] [18] J. H. Silverman, Advanced Topics in the Arithmetic of Elliptic Curves, Springer, New York, 1994. | Zbl 0911.14015

[018] [19] A. P. Veselov, What is an integrable mapping?, in: What is Integrability?, V. E. Zakharov (ed.), Springer, New York, 1991, 251-272. | Zbl 0733.58025

[019] [20] A. P. Veselov, Growth and integrability in the dynamics of mappings, Comm. Math. Phys. 145 (1992), 181-193. | Zbl 0751.58034

[020] [21] P. Walters, An Introduction to Ergodic Theory, Springer, New York, 1982. | Zbl 0475.28009

[021] [22] M. Ward, The law of repetition of primes in an elliptic divisibility sequence, Duke Math. J. 15 (1948), 941-946. | Zbl 0032.01403

[022] [23] M. Ward, Memoir on elliptic divisibility sequences, Amer. J. Math. 70 (1948), 31-74. | Zbl 0035.03702

[023] [24] T. Ward, The entropy of automorphisms of solenoidal groups, Master's thesis, Univ. of Warwick, 1986.

[024] [25] A. Weil, Basic Number Theory, third ed., Springer, New York, 1974.