Large deviations for generic stationary processes
Lesigne, Emmanuel ; Volný, Dalibor
Colloquium Mathematicae, Tome 84/85 (2000), p. 75-82 / Harvested from The Polish Digital Mathematics Library

Let (Ω,A,μ,T) be a measure preserving dynamical system. The speed of convergence in probability in the ergodic theorem for a generic function on Ω is arbitrarily slow.

Publié le : 2000-01-01
EUDML-ID : urn:eudml:doc:210810
@article{bwmeta1.element.bwnjournal-article-cmv84i1p75bwm,
     author = {Emmanuel Lesigne and Dalibor Voln\'y},
     title = {Large deviations for generic stationary processes},
     journal = {Colloquium Mathematicae},
     volume = {84/85},
     year = {2000},
     pages = {75-82},
     zbl = {0973.28014},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv84i1p75bwm}
}
Lesigne, Emmanuel; Volný, Dalibor. Large deviations for generic stationary processes. Colloquium Mathematicae, Tome 84/85 (2000) pp. 75-82. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv84i1p75bwm/

[000] [Bu-Den] Burton, R. and Denker, M. On the central limit theorem for dynamical systems, Trans. Amer. Math. Soc. 302 (1987), 715-726. | Zbl 0628.60030

[001] [C] Cramér, H. Sur un nouveau théorème-limite de la théorie des probabilités, in: Actualités Sci. Indust. 736, Hermann, Paris, 1938, 5-23. | Zbl 64.0529.01

[002] s Dembo, A. and Zeitouni, O. Large Deviations Techniques and Applications, Jones and Bartlett, Boston, 1993 (or: Appl. Math. 38, Springer, 1998). | Zbl 0793.60030

[003] s del Junco, A. and Rosenblatt, J. Counterexamples in ergodic theory and in number theory, Math. Ann. 245 (1979), 185-197. | Zbl 0398.28021

[004] [K] Katok, A. Constructions in ergodic theory, unpublished manuscript. | Zbl 1030.37001

[005] [Kr] Krengel, U. On the speed of convergence in the ergodic theorem, Monatsh. Math. 86 (1978), 3-6. | Zbl 0352.28008

[006] [L1] Lacey, M. On weak convergence in dynamical systems to self-similar processes with spectral representation, Trans. Amer. Math. Soc. 328 (1991), 767-778. | Zbl 0741.60026

[007] [L2] Lacey, M. On central limit theorems, modulus of continuity and Diophantine type for irrational rotations, J. Anal. Math. 61 (1993), 47-59.

[008] [Pa] Parry, W. Topics in Ergodic Theory, Cambridge Univ. Press, 1981. | Zbl 0449.28016

[009] [Pe] Petrov, V. V. Limit Theorems of Probability Theory, Oxford Stud. Probab. 4, Oxford Sci. Publ., Oxford Univ. Press, 1995.

[010] [V1] Volný, D. On limit theorems and category for dynamical systems, Yokohama Math. J. 38 (1990), 29-35. | Zbl 0735.60025

[011] [V2] Volný, D, Invariance principles and Gaussian approximation for strictly stationary processes, Trans. Amer. Math. Soc. 351 (1999), 3351-3371. | Zbl 0939.37006

[012] [V-W] Volný, D. and Weiss, B. Coboundaries in L0, in preparation. | Zbl 1055.60018