Relatively minimal extensions of topological flows
Mentzen, Mieczysław
Colloquium Mathematicae, Tome 84/85 (2000), p. 51-65 / Harvested from The Polish Digital Mathematics Library

The concept of relatively minimal (rel. min.) extensions of topological flows is introduced. Several generalizations of properties of minimal extensions are shown. In particular the following extensions are rel. min.: distal point transitive, inverse limits of rel. min., superpositions of rel. min. Any proximal extension of a flow Y with a dense set of almost periodic (a.p.) points contains a unique subflow which is a relatively minimal extension of Y. All proximal and distal factors of a point transitive flow with a dense set of a.p. points are rel. min. In the class of point transitive flows with a dense set of a.p. points, distal open extensions are disjoint from all proximal extensions. An example of a relatively minimal point transitive extension determined by a cocycle which is a coboundary in the measure-theoretic sense is given.

Publié le : 2000-01-01
EUDML-ID : urn:eudml:doc:210808
@article{bwmeta1.element.bwnjournal-article-cmv84i1p51bwm,
     author = {Mieczys\l aw Mentzen},
     title = {Relatively minimal extensions of topological flows},
     journal = {Colloquium Mathematicae},
     volume = {84/85},
     year = {2000},
     pages = {51-65},
     zbl = {0984.54044},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv84i1p51bwm}
}
Mentzen, Mieczysław. Relatively minimal extensions of topological flows. Colloquium Mathematicae, Tome 84/85 (2000) pp. 51-65. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv84i1p51bwm/

[000] [1] J. Aaronson, M. Lemańczyk, C. Mauduit and H. Nakada, Koksma's inequality and group extensions of Kronecker transformations, in: Algorithms, Fractals, and Dynamics, Plenum Press, New York, 1995, 27-50. | Zbl 0878.28009

[001] [2] R. Ellis, Lectures on Topological Dynamics, Benjamin, New York, 1969.

[002] [3] S. Glasner and B. Weiss, On the construction of minimal skew products, Israel J. Math. 34 (1979), 321-336. | Zbl 0434.54032

[003] [4] M. Lemańczyk and K. K. Mentzen, Topological ergodicity of real cocycles over minimal rotations, preprint. | Zbl 1002.54023

[004] [5] K. Schmidt, Cocycles of Ergodic Transformation Groups, Lecture Notes in Math. 1, MacMillan of India, 1977. | Zbl 0421.28017

[005] [6] J. de Vries, Elements of Topological Dynamics, Kluwer Acad. Publ., 1993. | Zbl 0783.54035