We prove that for a certain class of shifts of finite type with positive topological entropy there is always an invariant measure, with entropy arbitrarily close to the topological entropy, that has strong metric mixing properties. With the additional assumption that there are dense periodic orbits, one can ensure that this measure is Bernoulli.
@article{bwmeta1.element.bwnjournal-article-cmv84i1p43bwm, author = {E. Robinson and Ay\c se \c Sahin}, title = {Mixing properties of nearly maximal entropy measures for $$\mathbb{Z}$^{d}$ shifts of finite type}, journal = {Colloquium Mathematicae}, volume = {84/85}, year = {2000}, pages = {43-50}, zbl = {0969.28009}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv84i1p43bwm} }
Robinson, E.; Şahin, Ayşe. Mixing properties of nearly maximal entropy measures for $ℤ^{d}$ shifts of finite type. Colloquium Mathematicae, Tome 84/85 (2000) pp. 43-50. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv84i1p43bwm/
[000] [1] R. Burton and J. E. Steif, Non-uniqueness of measures of maximal entropy for subshifts of finite type, Ergodic Theory Dynam. Systems 14 (1994), 213-235. | Zbl 0807.58023
[001] [2] R. Burton and J. E. Steif, Some -d symbolic dynamical systems: entropy and mixing, in: Ergodic Theory of Actions (Warwick, 1993-1994), London Math. Soc. Lecture Note Ser. 228, Cambridge Univ. Press, Cambridge, 1996, 297-305. | Zbl 0852.58029
[002] [3] A. Fieldsteel and N. A. Friedman, Restricted orbit changes of ergodic -actions to achieve mixing and completely positive entropy, Ergodic Theory Dynam. Systems 6 (1986), 505-528. | Zbl 0614.28016
[003] [4] H R. J. Hasfura-Buenaga, The equivalence theorem for -actions of positive entropy, ibid. 12 (1992), 725-741. | Zbl 0813.28007
[004] [5] A. del Junco and D. J. Rudolph, Kakutani equivalence of ergodic actions, ibid. 4 (1984), 89-104. | Zbl 0552.28021
[005] [6] F. Ledrappier, Un champ markovien peut être d'entropie nulle et mélangeant, C. R. Acad. Sci. Paris Sér. A 287 (1978), 561-563. | Zbl 0387.60084
[006] [7] M. Misiurewicz, A short proof of the variational principle for a action on a compact space, Astérisque 40 (1976), 147-157.
[007] [8] S. Mozes, A zero entropy, mixing of all orders tiling system, in: Symbolic Dynamics and its Applications (New Haven, CT, 1991), Amer. Math. Soc., Providence, RI, 1992, 319-325.
[008] [9] E. A. Robinson, Jr. and A. A. Şahin, On the absence of invariant measures with locally maximal entropy for a class of shifts of finite type, Proc. Amer. Math. Soc., to appear.
[009] [10] E. A. Robinson, Modeling ergodic measure preserving actions on shifts of finite type, preprint, 1998.
[010] [11] T. Ward, Automorphisms of -subshifts of finite type, Indag. Math. (N.S.) 5 (1994), 495-504. | Zbl 0823.28007