Sur l'absence de mélange pour des flots spéciaux au-dessus d'une rotation irrationnelle
Lemańczyk, M.
Colloquium Mathematicae, Tome 84/85 (2000), p. 29-41 / Harvested from The Polish Digital Mathematics Library

We prove the absence of mixing for special flows built over (1) an irrational rotation and under a function whose Fourier coefficients are of order O(1/|n|), and (2) an irrational rotation (satisfying a diophantine condition) and under a function having a finite number of singularities of a logarithmic type. These results generalize two theorems of Kochergin.

Publié le : 2000-01-01
EUDML-ID : urn:eudml:doc:210806
@article{bwmeta1.element.bwnjournal-article-cmv84i1p29bwm,
     author = {M. Lema\'nczyk},
     title = {Sur l'absence de m\'elange pour des flots sp\'eciaux au-dessus d'une rotation irrationnelle},
     journal = {Colloquium Mathematicae},
     volume = {84/85},
     year = {2000},
     pages = {29-41},
     language = {fr},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv84i1p29bwm}
}
Lemańczyk, M. Sur l'absence de mélange pour des flots spéciaux au-dessus d'une rotation irrationnelle. Colloquium Mathematicae, Tome 84/85 (2000) pp. 29-41. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv84i1p29bwm/

[000] [1] J. Aaronson, An Introduction to Infinite Ergodic Theory, Math. Surveys Monogr. 50, Amer. Math. Soc., Providence, 1997.

[001] [2] J. Aaronson, M. Lemańczyk, C. Mauduit and H. Nakada, Koksma's inequality and group extensions of Kronecker transformations, in: Algorithms, Fractals and Dynamics, Y. Takahashi (ed.), Plenum Press, 1995, 27-50. | Zbl 0878.28009

[002] [3] I. P. Cornfeld, S. V. Fomin and Ya. G. Sinai, Ergodic Theory, Springer, New York, 1982.

[003] [4] G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Clarendon, Oxford, 1960. | Zbl 0086.25803

[004] [5] K. M. Khanin and Ya. G. Sinai, Mixing of some classes of special flows over a circle rotation, Funktsional. Anal. i Prilozhen. 26 (1992), no. 3, 1-21 (in Russian).

[005] [6] A. Ya. Khintchin, Continued Fractions, Univ. of Chicago Press, 1960.

[006] [7] A. V. Kočergin [A. V. Kochergin], On the absence of mixing in special flows over the rotation of a circle and in flows on a two-dimensional torus, Dokl. Akad. Nauk SSSR 205 (1972), 515-518 (in Russian); English transl.: Soviet Math. Dokl. 13 (1972), 949-952.

[007] [8] A. V. Kočergin [A. V. Kochergin], Time change for flows and mixing, Izv. Akad. Nauk SSSR Ser. Mat. 37 (1973), 1275-1298 (in Russian). | Zbl 0286.28013

[008] [9] A. V. Kočergin [A. V. Kochergin], On the mixing of special flows over interval exchange maps and in smooth flows on surfaces, Mat. Sb. 96 (1975), 471-502 (in Russian). | Zbl 0321.28012

[009] [10] A. V. Kočergin [A. V. Kochergin], Nonsingular saddle points and the absence of mixing, Mat. Zametki 19 (1976), 453-468 (in Russian); English transl.: Math. Notes 19 (1976), 277-286. | Zbl 0344.28008

[010] [11] L. Kuipers and H. Niederreiter, Uniform Distribution of Sequences, Wiley, 1974. | Zbl 0281.10001

[011] [12] M. Lemańczyk and C. Mauduit, Ergodicity of a class of cocycles over irrational rotations, J. London Math. Soc. 49 (1994), 124-132. | Zbl 0801.28009

[012] [13] M. Lemańczyk, F. Parreau and D. Volný, Ergodic properties of real cocycles and pseudo-homogeneous Banach spaces, Trans. Amer. Math. Soc. 348 (1996), 4919-4938. | Zbl 0876.28021

[013] [14] V. V. Ryzhikov, The absence of mixing in special flows over rearrangements of segments, Math. Notes 55 (1994), 648-650. | Zbl 0849.28009

[014] [15] K. Schmidt, Cocycles of Ergodic Transformation Groups, Lecture Notes in Math. 1, Mac Millan of India, 1977. | Zbl 0421.28017