Time weighted entropies
Schmeling, Jörg
Colloquium Mathematicae, Tome 84/85 (2000), p. 265-278 / Harvested from The Polish Digital Mathematics Library

For invertible transformations we introduce various notions of topological entropy. For compact invariant sets these notions are all the same and equal the usual topological entropy. We show that for non-invariant sets these notions are different. They can be used to detect the direction in time in which the system evolves to highest complexity.

Publié le : 2000-01-01
EUDML-ID : urn:eudml:doc:210805
@article{bwmeta1.element.bwnjournal-article-cmv84i1p265bwm,
     author = {J\"org Schmeling},
     title = {Time weighted entropies},
     journal = {Colloquium Mathematicae},
     volume = {84/85},
     year = {2000},
     pages = {265-278},
     zbl = {0959.37014},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv84i1p265bwm}
}
Schmeling, Jörg. Time weighted entropies. Colloquium Mathematicae, Tome 84/85 (2000) pp. 265-278. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv84i1p265bwm/

[000] [1] L. Barreira and J. Schmeling, Sets of 'non-typical' points have full topological entropy and full Hausdorff dimension, Israel J. Math., to appear. | Zbl 0988.37029

[001] [2] R. Bowen, Topological entropy for noncompact sets, Trans. Amer. Math. Soc. 184 (1973), 125-136. | Zbl 0274.54030

[002] [3] Ya. Pesin, Dimension Theory in Dynamical Systems: Contemporary Views and Applications, Chicago Lectures in Math., The Univ. of Chicago Press, 1997.

[003] [4] Ya. Pesin and B. Pitskel', Topological pressure and the variational principle for noncompact sets, Functional Anal. Appl. 18 (1984), no. 4, 307-318.

[004] [5] C. Rogers, Hausdorff Measures, Cambridge Univ. Press, 1970.

[005] [6] J. Schmeling, Entropy preservation under Markov coding, DANSE-preprint 6/99.