An integral Markov operator appearing in biomathematics is investigated. This operator acts on the space of probabilistic Borel measures. Let and be probabilistic Borel measures. Sufficient conditions for weak and strong convergence of the sequence to are given.
@article{bwmeta1.element.bwnjournal-article-cmv84i1p255bwm, author = {Ryszard Rudnicki}, title = {Strong and weak stability of some Markov operators}, journal = {Colloquium Mathematicae}, volume = {84/85}, year = {2000}, pages = {255-263}, zbl = {0992.47016}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv84i1p255bwm} }
Rudnicki, Ryszard. Strong and weak stability of some Markov operators. Colloquium Mathematicae, Tome 84/85 (2000) pp. 255-263. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv84i1p255bwm/
[000] [1] M. F. Barnsley, Fractals Everywhere, Acad. Press, New York, 1988.
[001] [2] K. Baron and A. Lasota, Asymptotic properties of Markov operators defined by Volterra type integrals, Ann. Polon. Math. 58 (1993), 161-175. | Zbl 0839.47021
[002] [3] C. J. K. Batty, Z. Brzeźniak and D. A. Greenfield, A quantitative asymptotic theorem for contraction semigroups with countable unitary spectrum, Studia Math. 121 (1996), 167-183. | Zbl 0862.47020
[003] [4] S. R. Foguel, The Ergodic Theory of Markov Processes, Van Nostrand Reinhold, New York, 1969.
[004] [5] S. R. Foguel, Harris operators, Israel J. Math. 33 (1979), 281-309.
[005] [6] H. Gacki and A. Lasota, Markov operators defined by Volterra type integrals with advanced argument, Ann. Polon. Math. 51 (1990), 155-166. | Zbl 0721.34094
[006] [7] A. Iwanik, Baire category of mixing for stochastic operators, Rend. Circ. Mat. Palermo (2) Suppl. 28 (1992), 201-217. | Zbl 0764.60059
[007] [8] T. Komorowski and J. Tyrcha, Asymptotic properties of some Markov operators, Bull. Polish Acad. Sci. Math. 37 (1989), 221-228. | Zbl 0767.47012
[008] [9] A. Lasota and M. C. Mackey, Chaos, Fractals and Noise. Stochastic Aspects of Dynamics, Appl. Math. Sci. 97, Springer, New York, 1994.
[009] [10] A. Lasota and M. C. Mackey, Global asymptotic properties of proliferating cell populations, J. Math. Biol. 19 (1984), 43-62. | Zbl 0529.92011
[010] [11] A. Lasota, M. C. Mackey and J. Tyrcha, The statistical dynamics of recurrent biological events, ibid. 30 (1992), 775-800. | Zbl 0763.92001
[011] [12] M. Lin, Mixing for Markov operators, Z. Wahrsch. Verw. Gebiete 19 (1971), 231-242. | Zbl 0212.49301
[012] [13] K. Łoskot and R. Rudnicki, Sweeping of some integral operators, Bull. Polish Acad. Sci. Math. 37 (1989), 229-235. | Zbl 0767.47013
[013] [14] J. van Neerven, The Asymptotic Behaviour of a Semigroup of Linear Operators, Birkhäuser, Basel, 1996. | Zbl 0905.47001
[014] [15] E. Nummelin, General Irreducible Markov Chains and Non-Negative Operators, Cambridge Tracts in Math. 83, Cambridge Univ. Press, Cambridge, 1984. | Zbl 0551.60066
[015] [16] R. Rudnicki, Stability in of some integral operators, Integral Equations Operator Theory 24 (1996), 320-327. | Zbl 0843.47021
[016] [17] R. Rudnicki, On asymptotic stability and sweeping for Markov operators, Bull. Polish Acad. Sci. Math. 43 (1995), 245-262. | Zbl 0838.47040
[017] [18] J. Tyrcha, Asymptotic stability in a generalized probabilistic/deterministic model of the cell cycle, J. Math. Biol. 26 (1988), 465-475. | Zbl 0716.92017
[018] [19] J. J. Tyson, Mini review: Size control of cell division, J. Theoret. Biol. 120 (1987), 381-391.
[019] [20] J. J. Tyson and K. B. Hannsgen, Global asymptotic stability of the size distribution in probabilistic models of the cell cycle, J. Math. Biol. 22 (1985), 61-68. | Zbl 0558.92012
[020] [21] J. J. Tyson and K. B. Hannsgen, Cell growth and division: A deterministic/probabilistic model of the cell cycle, ibid. 23 (1986), 231-246. | Zbl 0582.92020