We investigate the properties of the entropy and conditional entropy of measurable partitions of unity in the space of essentially bounded functions defined on a Lebesgue probability space.
@article{bwmeta1.element.bwnjournal-article-cmv84i1p245bwm, author = {Brunon Kami\'nski and Jos\'e de Sam Lazaro}, title = {A note on the entropy of a doubly stochastic operator}, journal = {Colloquium Mathematicae}, volume = {84/85}, year = {2000}, pages = {245-254}, zbl = {0977.37015}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv84i1p245bwm} }
Kamiński, Brunon; de Sam Lazaro, José. A note on the entropy of a doubly stochastic operator. Colloquium Mathematicae, Tome 84/85 (2000) pp. 245-254. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv84i1p245bwm/
[000] [1] E. Ghys, R. Langevin et P. Walczak, Entropie mesurée et partitions de l'unité, C. R. Acad. Sci. Paris Sér. I 303 (1986), 251-254. | Zbl 0595.60004
[001] [2] A. Iwanik, Pointwise induced semigroups of σ-endomorphisms, Colloq. Math. 38 (1977), 27-35.
[002] [3] P. A. Meyer, Probabilités et Potentiel, Hermann, Paris, 1966. | Zbl 0138.10402
[003] [4] V. A. Rokhlin, Lectures on the entropy theory of transformations with invariant measure, Uspekhi Mat. Nauk 22 (1967), no. 3, 3-56 (in Russian).