We introduce an invariant of cohomology in Bernoulli shifts, which is used to answer a question about cohomology of Hölder functions with finitary functions whose coding time is integrable. When restricted to the class of Hölder functions, this invariant even provides a criterion of cohomology.
@article{bwmeta1.element.bwnjournal-article-cmv84i1p23bwm, author = {Thierry de la Rue}, title = {Sur la cohomologie dans les sch\'emas de Bernoulli}, journal = {Colloquium Mathematicae}, volume = {84/85}, year = {2000}, pages = {23-28}, zbl = {0979.37004}, language = {fra}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv84i1p23bwm} }
de la Rue, Thierry. Sur la cohomologie dans les schémas de Bernoulli. Colloquium Mathematicae, Tome 84/85 (2000) pp. 23-28. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv84i1p23bwm/
[000] [1] R. Bowen, Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms, Lecture Notes in Math. 470, Springer, Berlin, 1975. | Zbl 0308.28010
[001] [2] A. V. Kočergin, On the homology of functions over dynamical systems, Soviet Math. Dokl. 17 (1976), 1637-1641. | Zbl 0414.28024
[002] [3] F. Ledrappier, Sur la condition de Bernoulli faible et ses applications, Lecture Notes in Math. 532, Springer, Berlin, 1976, 152-159. | Zbl 0394.28011
[003] [4] A. N. Livšic, Cohomology of dynamical systems, Math. USSR-Izv. 6 (1972), 1278-1301.