We present a simple proof of the theorem which says that for a series of extensions of differential fields K ⊂ L ⊂ M, where K ⊂ M is Picard-Vessiot, the extension K ⊂ L is Picard-Vessiot iff the differential Galois group is a normal subgroup of . We also present a proof that the probability function Erf(x) is not an elementary function.
@article{bwmeta1.element.bwnjournal-article-cmv84i1p173bwm, author = {Henryk \.Zo\l \k adek}, title = {Two remarks about Picard-Vessiot extensions and elementary functions}, journal = {Colloquium Mathematicae}, volume = {84/85}, year = {2000}, pages = {173-183}, zbl = {1003.12002}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv84i1p173bwm} }
Żołądek, Henryk. Two remarks about Picard-Vessiot extensions and elementary functions. Colloquium Mathematicae, Tome 84/85 (2000) pp. 173-183. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv84i1p173bwm/
[000] [Bor] A. Borel, Linear Algebraic Groups, Benjamin, New York, 1969.
[001] [Dav] J. H. Davenport, On the Integration of Algebraic Functions, Springer, Berlin, 1981.
[002] [Kap] I. Kaplansky, An Introduction to Differential Algebra, Hermann, Paris, 1957. | Zbl 0083.03301
[003] [Kol] E. Kolchin, Differential Algebra and Algebraic Groups, Academic Press, New York, 1973. | Zbl 0264.12102
[004] [Lio] J. Liouville, Premier mémoire sur la détermination des intégrales dont la valeur est algébrique, J. École Polytech. 14 (1833), 124-148; Second mémoire sur la détermination des intégrales dont la valeur est algébrique, ibid., 149-193.
[005] [Mag] A. G. Magid, Lectures on Differential Galois Theory, Amer. Math. Soc., Providence, 1994.
[006] [Rit] J. F. Ritt, Integration in Finite Terms. Liouville's Theory of Elementary Methods, Columbia Univ. Press, New York, 1948.
[007] [Sin] M. F. Singer, Algebraic relations among solutions of linear differential equations, Trans. Amer. Math. Soc. 295 (1986), 753-763. | Zbl 0593.12014