Average convergence rate of the first return time
Choe, Geon ; Kim, Dong
Colloquium Mathematicae, Tome 84/85 (2000), p. 159-171 / Harvested from The Polish Digital Mathematics Library

The convergence rate of the expectation of the logarithm of the first return time Rn, after being properly normalized, is investigated for ergodic Markov chains. I. Kontoyiannis showed that for any β > 0 we have log[Rn(x)Pn(x)]=o(nβ) a.s. for aperiodic cases and A. J. Wyner proved that for any ε >0 we have -(1+ε)lognlog[Rn(x)Pn(x)]loglogn eventually, a.s., where Pn(x) is the probability of the initial n-block in x. In this paper we prove that E[logR(L,S)-(L-1)h] converges to a constant depending only on the process where R(L,S) is the modified first return time with block length L and gap size S. In the last section a formula is proposed for measuring entropy sharply; it may detect periodicity of the process.

Publié le : 2000-01-01
EUDML-ID : urn:eudml:doc:210794
@article{bwmeta1.element.bwnjournal-article-cmv84i1p159bwm,
     author = {Geon Choe and Dong Kim},
     title = {Average convergence rate of the first return time},
     journal = {Colloquium Mathematicae},
     volume = {84/85},
     year = {2000},
     pages = {159-171},
     zbl = {0972.94016},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv84i1p159bwm}
}
Choe, Geon; Kim, Dong. Average convergence rate of the first return time. Colloquium Mathematicae, Tome 84/85 (2000) pp. 159-171. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv84i1p159bwm/

[000] [1] A. Dembo and I. Kontoyiannis, The asymptotics of waiting times between stationary processes, allowing distortion, Ann. Appl. Probab. 9 (1999), 413-429. | Zbl 0940.60033

[001] [2] M. Kac, On the notion of recurrence in discrete stochastic processes, Bull. Amer. Math. Soc. 53 (1947), 1002-1010. | Zbl 0032.41802

[002] [3] J. G. Kemeny and J. L. Snell, Finite Markov Chains, Springer, New York, 1976. | Zbl 0328.60035

[003] [4] I. Kontoyiannis, Asymptotic recurrence and waiting times for stationary processes, J. Theoret. Probab. 11 (1998), 795-811. | Zbl 0912.60051

[004] [5] I. Kontoyiannis, P. H. Algoet, Yu. M. Suhov and A. J. Wyner, Nonparametric entropy estimation for stationary processes and random fields, with applications to English text, IEEE Trans. Inform. Theory 44 (1998), 1319-1327. | Zbl 1026.94516

[005] [6] D. Lind and B. Marcus, An Introduction to Symbolic Dynamics and Coding, Cambridge Univ. Press, 1995. | Zbl 1106.37301

[006] [7] G. Louchard and W. Szpankowski, On the average redundancy rate of the Lempel-Ziv code, IEEE Trans. Inform. Theory 43 (1997), 2-8. | Zbl 0873.94009

[007] [8] U. Maurer, A universal statistical test for random bit generators, J. Cryptology 5 (1992), 89-105. | Zbl 0790.94014

[008] [9] D. Ornstein and B. Weiss, Entropy and data compression schemes, IEEE Trans. Inform. Theory 39 (1993), 78-83. | Zbl 0764.94003

[009] [10] C. Shannon, The mathematical theory of communication, Bell Sys. Tech. J. 27 (1948), 379-423 and 623-656. | Zbl 1154.94303

[010] [11] P. C. Shields, The Ergodic Theory of Discrete Sample Paths, Grad. Stud. Math. 13 Amer. Math. Soc., 1996.

[011] [12] W. Szpankowski, Asymptotic properties of data compression and suffix trees, IEEE Trans. Inform. Theory 39 (1993), 1647-1659. | Zbl 0802.94007

[012] [13] F. M. J. Willems, Universal data compression and repetition times, ibid. 35 (1989), 54-58. | Zbl 0671.94005

[013] [14] A. J. Wyner, Strong matching theorems and applications to data compression and statistics, Ph.D. thesis, Stanford Univ., 1993.

[014] [15] A. J. Wyner, More on recurrence and waiting times, Ann. Appl. Probab., to appear. | Zbl 0955.60031

[015] [16] A. J. Wyner and J. Ziv, Some asymptotic properties of the entropy of a stationary ergodic data source with applications to data compression, IEEE Trans. Inform. Theory 35 (1989), 1250-1258. | Zbl 0695.94003

[016] [17] J. Ziv and A. Lempel, A universal algorithm for sequential data compression, ibid. 23 (1977), 337-343. | Zbl 0379.94010

[017] [18] J. Ziv and A. Lempel, Compression of individual sequences via variable rate coding, ibid. 24 (1978), 530-536. | Zbl 0392.94004