The convergence rate of the expectation of the logarithm of the first return time , after being properly normalized, is investigated for ergodic Markov chains. I. Kontoyiannis showed that for any β > 0 we have a.s. for aperiodic cases and A. J. Wyner proved that for any ε >0 we have eventually, a.s., where is the probability of the initial n-block in x. In this paper we prove that converges to a constant depending only on the process where is the modified first return time with block length L and gap size S. In the last section a formula is proposed for measuring entropy sharply; it may detect periodicity of the process.
@article{bwmeta1.element.bwnjournal-article-cmv84i1p159bwm, author = {Geon Choe and Dong Kim}, title = {Average convergence rate of the first return time}, journal = {Colloquium Mathematicae}, volume = {84/85}, year = {2000}, pages = {159-171}, zbl = {0972.94016}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv84i1p159bwm} }
Choe, Geon; Kim, Dong. Average convergence rate of the first return time. Colloquium Mathematicae, Tome 84/85 (2000) pp. 159-171. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv84i1p159bwm/
[000] [1] A. Dembo and I. Kontoyiannis, The asymptotics of waiting times between stationary processes, allowing distortion, Ann. Appl. Probab. 9 (1999), 413-429. | Zbl 0940.60033
[001] [2] M. Kac, On the notion of recurrence in discrete stochastic processes, Bull. Amer. Math. Soc. 53 (1947), 1002-1010. | Zbl 0032.41802
[002] [3] J. G. Kemeny and J. L. Snell, Finite Markov Chains, Springer, New York, 1976. | Zbl 0328.60035
[003] [4] I. Kontoyiannis, Asymptotic recurrence and waiting times for stationary processes, J. Theoret. Probab. 11 (1998), 795-811. | Zbl 0912.60051
[004] [5] I. Kontoyiannis, P. H. Algoet, Yu. M. Suhov and A. J. Wyner, Nonparametric entropy estimation for stationary processes and random fields, with applications to English text, IEEE Trans. Inform. Theory 44 (1998), 1319-1327. | Zbl 1026.94516
[005] [6] D. Lind and B. Marcus, An Introduction to Symbolic Dynamics and Coding, Cambridge Univ. Press, 1995. | Zbl 1106.37301
[006] [7] G. Louchard and W. Szpankowski, On the average redundancy rate of the Lempel-Ziv code, IEEE Trans. Inform. Theory 43 (1997), 2-8. | Zbl 0873.94009
[007] [8] U. Maurer, A universal statistical test for random bit generators, J. Cryptology 5 (1992), 89-105. | Zbl 0790.94014
[008] [9] D. Ornstein and B. Weiss, Entropy and data compression schemes, IEEE Trans. Inform. Theory 39 (1993), 78-83. | Zbl 0764.94003
[009] [10] C. Shannon, The mathematical theory of communication, Bell Sys. Tech. J. 27 (1948), 379-423 and 623-656. | Zbl 1154.94303
[010] [11] P. C. Shields, The Ergodic Theory of Discrete Sample Paths, Grad. Stud. Math. 13 Amer. Math. Soc., 1996.
[011] [12] W. Szpankowski, Asymptotic properties of data compression and suffix trees, IEEE Trans. Inform. Theory 39 (1993), 1647-1659. | Zbl 0802.94007
[012] [13] F. M. J. Willems, Universal data compression and repetition times, ibid. 35 (1989), 54-58. | Zbl 0671.94005
[013] [14] A. J. Wyner, Strong matching theorems and applications to data compression and statistics, Ph.D. thesis, Stanford Univ., 1993.
[014] [15] A. J. Wyner, More on recurrence and waiting times, Ann. Appl. Probab., to appear. | Zbl 0955.60031
[015] [16] A. J. Wyner and J. Ziv, Some asymptotic properties of the entropy of a stationary ergodic data source with applications to data compression, IEEE Trans. Inform. Theory 35 (1989), 1250-1258. | Zbl 0695.94003
[016] [17] J. Ziv and A. Lempel, A universal algorithm for sequential data compression, ibid. 23 (1977), 337-343. | Zbl 0379.94010
[017] [18] J. Ziv and A. Lempel, Compression of individual sequences via variable rate coding, ibid. 24 (1978), 530-536. | Zbl 0392.94004