Linear growth of the derivative for measure-preserving diffeomorphisms
Frączek, Krzysztof
Colloquium Mathematicae, Tome 84/85 (2000), p. 147-157 / Harvested from The Polish Digital Mathematics Library

We consider measure-preserving diffeomorphisms of the torus with zero entropy. We prove that every ergodic C1-diffeomorphism with linear growth of the derivative is algebraically conjugate to a skew product of an irrational rotation on the circle and a circle C1-cocycle. We also show that for no positive β ≠ 1 does there exist an ergodic C2-diffeomorphism whose derivative has polynomial growth with degree β.

Publié le : 2000-01-01
EUDML-ID : urn:eudml:doc:210793
@article{bwmeta1.element.bwnjournal-article-cmv84i1p147bwm,
     author = {Krzysztof Fr\k aczek},
     title = {Linear growth of the derivative for measure-preserving diffeomorphisms},
     journal = {Colloquium Mathematicae},
     volume = {84/85},
     year = {2000},
     pages = {147-157},
     zbl = {0976.37001},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv84i1p147bwm}
}
Frączek, Krzysztof. Linear growth of the derivative for measure-preserving diffeomorphisms. Colloquium Mathematicae, Tome 84/85 (2000) pp. 147-157. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv84i1p147bwm/

[000] [1] I. P. Cornfeld, S. V. Fomin and Ya. G. Sinai, Ergodic Theory, Springer, Berlin, 1982.

[001] [2] M. Herman, Sur la conjugaison différentiable des difféomorphismes du cercle à des rotations, Publ. Math. IHES 49 (1979), 5-234.

[002] [3] A. Iwanik, M. Lemańczyk and D. Rudolph, Absolutely continuous cocycles over irrational rotations, Israel J. Math. 83 (1993), 73-95. | Zbl 0786.28011

[003] [4] L. Kuipers and H. Niederreiter, Uniform Distribution of Sequences, Wiley, New York, 1974.