We consider measure-preserving diffeomorphisms of the torus with zero entropy. We prove that every ergodic -diffeomorphism with linear growth of the derivative is algebraically conjugate to a skew product of an irrational rotation on the circle and a circle -cocycle. We also show that for no positive β ≠ 1 does there exist an ergodic -diffeomorphism whose derivative has polynomial growth with degree β.
@article{bwmeta1.element.bwnjournal-article-cmv84i1p147bwm, author = {Krzysztof Fr\k aczek}, title = {Linear growth of the derivative for measure-preserving diffeomorphisms}, journal = {Colloquium Mathematicae}, volume = {84/85}, year = {2000}, pages = {147-157}, zbl = {0976.37001}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv84i1p147bwm} }
Frączek, Krzysztof. Linear growth of the derivative for measure-preserving diffeomorphisms. Colloquium Mathematicae, Tome 84/85 (2000) pp. 147-157. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv84i1p147bwm/
[000] [1] I. P. Cornfeld, S. V. Fomin and Ya. G. Sinai, Ergodic Theory, Springer, Berlin, 1982.
[001] [2] M. Herman, Sur la conjugaison différentiable des difféomorphismes du cercle à des rotations, Publ. Math. IHES 49 (1979), 5-234.
[002] [3] A. Iwanik, M. Lemańczyk and D. Rudolph, Absolutely continuous cocycles over irrational rotations, Israel J. Math. 83 (1993), 73-95. | Zbl 0786.28011
[003] [4] L. Kuipers and H. Niederreiter, Uniform Distribution of Sequences, Wiley, New York, 1974.