On subrelations of ergodic measured type III equivalence relations
Danilenko, Alexandre
Colloquium Mathematicae, Tome 84/85 (2000), p. 13-22 / Harvested from The Polish Digital Mathematics Library

We discuss the classification up to orbit equivalence of inclusions 𝑆 ⊂ ℛ of measured ergodic discrete hyperfinite equivalence relations. In the case of type III relations, the orbit equivalence classes of such inclusions of finite index are completely classified in terms of triplets consisting of a transitive permutation group G on a finite set (whose cardinality is the index of 𝑆 ⊂ ℛ), an ergodic nonsingular ℝ-flow V and a homomorphism of G to the centralizer of V.

Publié le : 2000-01-01
EUDML-ID : urn:eudml:doc:210792
@article{bwmeta1.element.bwnjournal-article-cmv84i1p13bwm,
     author = {Alexandre Danilenko},
     title = {On subrelations of ergodic measured type III equivalence relations},
     journal = {Colloquium Mathematicae},
     volume = {84/85},
     year = {2000},
     pages = {13-22},
     zbl = {0972.37004},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv84i1p13bwm}
}
Danilenko, Alexandre. On subrelations of ergodic measured type III equivalence relations. Colloquium Mathematicae, Tome 84/85 (2000) pp. 13-22. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv84i1p13bwm/

[000] [Da1] A. I. Danilenko, Comparison of cocycles of measured equivalence relations and lifting problems, Ergodic Theory Dynam. Systems 18 (1998), 125-151. | Zbl 0919.28015

[001] [Da2] A. I. Danilenko, Quasinormal subrelations of ergodic equivalence relations, Proc. Amer. Math. Soc. 126 (1998), 3361-3370. | Zbl 0917.28019

[002] [Dy] H. Dye, On groups of measure preserving transformations. I, Amer. J. Math. 81 (1959), 119-159. | Zbl 0087.11501

[003] [FM] J. Feldman and C. C. Moore, Ergodic equivalence relations, cohomology, and von Neumann algebras I, Trans. Amer. Math. Soc. 234 (1977), 289-324. | Zbl 0369.22009

[004] [FSZ] J. Feldman, C. Sutherland and R. Zimmer, Subrelations of ergodic equivalence relations, Ergodic Theory Dynam. Systems 9 (1989), 239-269. | Zbl 0654.22003

[005] [Ge] M. Gerber, Factor orbit equivalence and classification of finite extensions of ergodic transformations, Israel J. Math. 57 (1987), 28-48. | Zbl 0626.28012

[006] [GS1] V. Ya. Golodets and S. D. Sinel'shchikov, Amenable ergodic actions of groups and images of cocycles, Soviet Math. Dokl. 41 (1990), 523-525.

[007] [GS2] V. Ya. Golodets and S. D. Sinel'shchikov, Classification and structure of cocycles of amenable ergodic equivalence relations, J. Funct. Anal. 121 (1994), 455-485. | Zbl 0821.28010

[008] [Ha] T. Hamachi, Suborbits and group extensions of flows, Israel J. Math. 100 (1997), 249-283. | Zbl 0880.46046

[009] [HO] T. Hamachi and M. Osikawa, Ergodic groups of automorphisms and Krieger's theorems, Sem. Math. Sci. Keio Univ. 3 (1981). | Zbl 0472.28015

[010] [Kr] W. Krieger, On ergodic flows and isomorphism of factors, Math. Ann. 223 (1976), 19-70. | Zbl 0332.46045

[011] [Sc] K. Schmidt, On recurrence, Z. Wahrsch. Verw. Gebiete 68 (1984), 75-95. | Zbl 0535.60003

[012] [Zi] R. Zimmer, Extensions of ergodic group actions, Illinois J. Math. 20 (1976), 373-409. | Zbl 0334.28015