Symmetric cocycles and classical exponential sums
Forrest, Alan
Colloquium Mathematicae, Tome 84/85 (2000), p. 125-145 / Harvested from The Polish Digital Mathematics Library
Publié le : 2000-01-01
EUDML-ID : urn:eudml:doc:210791
@article{bwmeta1.element.bwnjournal-article-cmv84i1p125bwm,
     author = {Alan Forrest},
     title = {Symmetric cocycles and classical exponential sums},
     journal = {Colloquium Mathematicae},
     volume = {84/85},
     year = {2000},
     pages = {125-145},
     zbl = {0978.11041},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv84i1p125bwm}
}
Forrest, Alan. Symmetric cocycles and classical exponential sums. Colloquium Mathematicae, Tome 84/85 (2000) pp. 125-145. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv84i1p125bwm/

[000] [AP1] J. M. Anderson and L. D. Pitt, On recurrence properties of certain lacunary series I, J. Reine Angew. Math. 377 (1987), 65-82. | Zbl 0603.30004

[001] [AP2] J. M. Anderson and L. D. Pitt, On recurrence properties of certain lacunary series II, ibid., 83-96. | Zbl 0603.30004

[002] [At1] G. Atkinson, Non-compact extensions of transformations, Ph.D. Thesis, Univ. of Warwick, 1976.

[003] [At2] G. Atkinson, Recurrence of cocycles and random walks, J. London Math. Soc. (2) 13 (1976), 486-488.

[004] [At3] G. Atkinson, A class of transitive cylinder transformations, ibid. 17 (1978), 263-270.

[005] [Bi] P. Billingsley, Ergodic Theory and Information, Wiley Ser. Probab. Math. Statist., Wiley, New York, 1965.

[006] [Co] Z. Coelho, On the asymptotic range of cocycles for shifts of finite type, Ergodic Theory Dynam. Systems 13 (1993), 249-262.

[007] [D] F. M. Dekking, On transience and recurrence of generalised random walks, Z. Wahrsch. Verw. Gebiete 61 (1982), 459-465. | Zbl 0479.60070

[008] [GM-F] F. M. Dekking and M. Mendès-France, Uniform distribution modulo one: a geometrical viewpoint, J. Reine Angew. Math. 329 (1981), 143-153. | Zbl 0459.10025

[009] [FM] J. Feldman and C. Moore, Ergodic equivalence relations, cohomology and von Neumann algebras I, Trans. Amer. Math. Soc. 234 (1977), 289-324. | Zbl 0369.22009

[010] [Fo] A. H. Forrest, The limit points of Weyl sums and other continuous cocycles, J. London Math. Soc. (2) 54 (1996), 440-452.

[011] [F] H. Furstenberg, Recurrence in Ergodic Theory and Combinatorial Number Theory, Princeton Univ. Press, 1981.

[012] [G] Y. Guivarc'h, Propriétés ergodiques, en mesure infini, de certains systèmes dynamiques fibrés, Ergodic Theory Dynam. Systems 9 (1989), 433-453.

[013] [HL] G. H. Hardy and J. E. Littlewood, The trigonometric series associated with the elliptic θ-functions, Acta Math. 37 (1914), 193-239.

[014] [HW] G. H. Hardy and E. M. Wright, Introduction to the Theory of Numbers, Clarendon Press, Oxford, 1979.

[015] [He] G. A. Hedlund, A class of transformations of the plane, Proc. Cambridge Philos. Soc. 51 (1955), 554-564. | Zbl 0067.15301

[016] [I] A. Iwanik, Ergodicity for piecewise smooth cocycles over toral rotations, Fund. Math. 157 (1998), 235-244. | Zbl 0918.28015

[017] [Kh] A. Ya. Khintchine, Continued Fractions, Noordhoff, Groningen, 1963.

[018] [Kre] W. Krieger, On the finitary isomorphisms of Markov shifts that have finite expected coding time, Z. Wahrsch. Verw. Gebiete 65 (1983), 323-328. | Zbl 0516.60075

[019] [Kry] A. B. Krygin, An example of a cylindrical cascade with anomalous metric properties, Vestnik Moskov. Univ. Ser. I Mat. Mekh. 30 (1975), no. 5, 26-32 (in Russian). | Zbl 0324.28012

[020] [KN] L. Kuipers and H. Niederreiter, Uniform Distribution of Sequences, Wiley, New York, 1974. | Zbl 0281.10001

[021] [Liv] A. N. Livšic, Cohomology of dynamical systems, Math. USSR-Izv. 6 (1972), 1278-1301.

[022] [LM] M. Lemańczyk and M. K. Mentzen, Topological ergodicity of real cocycles over minimal rotations, preprint, April 1999.

[023] [LPV] M. Lemańczyk, F. Parreau and D. Volný, Ergodic properties of real cocycles and pseudo-homogeneous Banach spaces, Trans. Amer. Math. Soc. 348 (1996), 4919-4938. | Zbl 0876.28021

[024] [M] H. L. Montgomery, Ten Lectures on the Interface between Analytic Number Theory and Harmonic Analysis, CBMS Regional Conf. Ser. in Math. 84, Amer. Math. Soc., Providence, RI, 1994.

[025] [N] M. B. Nathanson, Additive Number Theory - The Classical Bases, Grad. Texts in Math. 164, Springer, New York, 1996.

[026] [PS] W. Parry and K. Schmidt, Coboundaries and homomorphisms for nonsingular actions and a problem of H. Helson, Invent. Math. 76 (1984), 15-32.

[027] [Pa] D. A. Pask, Skew products over the irrational rotation, Israel J. Math. 69 (1990), 65-74. | Zbl 0703.28009

[028] [Pu] L. D. Pustyl'nikov, New estimates of Weyl sums and the remainder term in the law of distribution of the fractional part of a polynomial, Ergodic Theory Dynam. Systems 11 (1991), 515-534.

[029] [Sch1] K. Schmidt, Cocycles of Ergodic Transformation Groups, Lecture Notes in Math. 1, MacMillan of India, 1977. | Zbl 0421.28017

[030] [Sch2] K. Schmidt, Hyperbolic structure preserving isomorphisms of Markov shifts, Israel J. Math. 55 (1986) 213-228. | Zbl 0615.28011

[031] [Schw] F. Schweiger, Ergodic Theory of Fibred Systems and Metric Number Theory, Clarendon Press, Oxford, 1995. | Zbl 0819.11027

[032] [Va] R. C. Vaughan, The Hardy-Littlewood Method, Cambridge Tract 80, Cambridge Univ. Press, 1981.

[033] [Vin] I. M. Vinogradov, The Method of Exponential Sums in the Theory of Numbers, Nauka, Moscow, 1971 (in Russian).

[034] [W] H. Weyl, Über die Gleichverteilung von Zahlen mod. Eins, Math. Ann. 77 (1916), 313-352. | Zbl 46.0278.06