Matrices over upper triangular bimodules and Δ-filtered modules over quasi-hereditary algebras
Brüstle, Thomas ; Hille, Lutz
Colloquium Mathematicae, Tome 84/85 (2000), p. 295-303 / Harvested from The Polish Digital Mathematics Library

Let Λ be a directed finite-dimensional algebra over a field k, and let B be an upper triangular bimodule over Λ. Then we show that the category of B-matrices mat B admits a projective generator P whose endomorphism algebra End P is quasi-hereditary. If A denotes the opposite algebra of End P, then the functor Hom(P,-) induces an equivalence between mat B and the category ℱ(Δ) of Δ-filtered A-modules. Moreover, any quasi-hereditary algebra whose category of Δ-filtered modules is equivalent to mat B is Morita equivalent to A.

Publié le : 2000-01-01
EUDML-ID : urn:eudml:doc:210788
@article{bwmeta1.element.bwnjournal-article-cmv83i2p295bwm,
     author = {Thomas Br\"ustle and Lutz Hille},
     title = {Matrices over upper triangular bimodules and $\Delta$-filtered modules over quasi-hereditary algebras},
     journal = {Colloquium Mathematicae},
     volume = {84/85},
     year = {2000},
     pages = {295-303},
     zbl = {0978.16009},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv83i2p295bwm}
}
Brüstle, Thomas; Hille, Lutz. Matrices over upper triangular bimodules and Δ-filtered modules over quasi-hereditary algebras. Colloquium Mathematicae, Tome 84/85 (2000) pp. 295-303. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv83i2p295bwm/

[000] [Ba] M. Bauch, Subspace categories as categories of good modules over quasi-hereditary algebras, Arch. Math. (Basel) 62 (1994), 112-115. | Zbl 0815.16005

[001] [BH1] T. Brüstle and L. Hille, Finite, tame and wild actions of parabolic subgroups in GL(V) on certain unipotent subgroups, J. Algebra 226 (2000), 347-360. | Zbl 0968.20023

[002] [BH2] T. Brüstle and L. Hille, Actions of parabolic subgroups in GLn on unipotent normal subgroups and quasi-hereditary algebras, this issue, 281-294. | Zbl 0978.16008

[003] [BHRZ] T. Brüstle, L. Hille, G. Röhrle and G. Zwara, The Bruhat-Chevalley order of parabolic group actions in general linear groups and degeneration for delta-filtered modules, Adv. Math. 148 (1999), 203-242. | Zbl 0953.20037

[004] [DR] V. Dlab and C. M. Ringel, The module theoretical approach to quasi-hereditary algebras, in: Representations of Algebras and Related Topics (Kyoto, 1990), London Math. Soc. Lecture Note Ser. 168, Cambridge Univ. Press, Cambridge, 1992, 200-224.

[005] [D] Yu. A. Drozd, Matrix problems, small reduction and representations of a class of mixed Lie groups, ibid., 225-249. | Zbl 0829.16009

[006] [GR] P. Gabriel and A. V. Roiter, Representations of Finite-Dimensional Algebras, Encyclopaedia Math. Sci. 73, Algebra VIII, Springer, 1992.

[007] [HR1] L. Hille and G. Röhrle, On parabolic subgroups of classical groups with a finite number of orbits on the unipotent radical, C. R. Acad. Sci. Paris Sér. I 325 (1997), 465-470. | Zbl 0922.20049

[008] [HR2] L. Hille and G. Röhrle, A classification of parabolic subgroups in classical groups with a finite number of orbits on the unipotent radical, Transform. Groups 4 (1999), 35-52. | Zbl 0924.20035

[009] [K] B. Keller, Chain complexes and stable categories, Manuscripta Math. 67 (1990), 379-417. | Zbl 0753.18005

[010] [Q] D. Quillen, Higher algebraic K-theory I, in: Algebraic K-Theory I, Proc. Conf. Battelle Inst. 1972, Lecture Notes in Math. 341, Springer, Berlin, 1973, 85-147. | Zbl 0292.18004

[011] [R] C. M. Ringel, Tame Algebras and Integral Quadratic Forms, Lecture Notes in Math. 1099, Springer, Berlin, 1984.

[012] [S] D. Simson, Linear Representations of Partially Ordered Sets and Vector Space Categories, Algebra Logic Appl. 4, Gordon and Breach, Montreux, 1992. | Zbl 0818.16009

[013] [T] R. Tiefenbrunner, Darstellungen von Bimodulproblemen, Diss., FU Berlin, 1995.