On some formula in connected cocommutative Hopf algebras over a field of characteristic 0
Wiśniewski, Piotr
Colloquium Mathematicae, Tome 84/85 (2000), p. 271-279 / Harvested from The Polish Digital Mathematics Library

Let H be a cocommutative connected Hopf algebra, where K is a field of characteristic zero. Let H+=Ker and h+=h-(h) for hH. We prove that dh=r=1((-1)r+1/r)h1+...hr+ is primitive, where h1...hr=Δr-1(h).

Publié le : 2000-01-01
EUDML-ID : urn:eudml:doc:210786
@article{bwmeta1.element.bwnjournal-article-cmv83i2p271bwm,
     author = {Piotr Wi\'sniewski},
     title = {On some formula in connected cocommutative Hopf algebras over a field of characteristic 0},
     journal = {Colloquium Mathematicae},
     volume = {84/85},
     year = {2000},
     pages = {271-279},
     zbl = {0962.16029},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv83i2p271bwm}
}
Wiśniewski, Piotr. On some formula in connected cocommutative Hopf algebras over a field of characteristic 0. Colloquium Mathematicae, Tome 84/85 (2000) pp. 271-279. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv83i2p271bwm/

[000] [1] S. Montgomery, Hopf Algebras and Their Actions on Rings, CBMS Regional Conf. Ser. in Math. 82, Amer. Math. Soc., Providence, RI, 1993.

[001] [2] S. A. Saymeh, On Hasse-Schmidt higher derivations, Osaka J. Math. 23 (1986), 503-508. | Zbl 0609.13017

[002] [3] M. E. Sweedler, Hopf Algebras, Benjamin, New York, 1969.

[003] [4] N. Ya. Vilenkin, Combinatorics, Academic Press, New York, 1971.