On the algebra of constants of polynomial derivations in two variables
Zieliński, Janusz
Colloquium Mathematicae, Tome 84/85 (2000), p. 267-269 / Harvested from The Polish Digital Mathematics Library

Let d be a k-derivation of k[x,y], where k is a field of characteristic zero. Denote by d˜ the unique extension of d to k(x,y). We prove that if ker d ≠ k, then ker d˜ = (ker d)0, where (ker d)0 is the field of fractions of ker d.

Publié le : 2000-01-01
EUDML-ID : urn:eudml:doc:210785
@article{bwmeta1.element.bwnjournal-article-cmv83i2p267bwm,
     author = {Janusz Zieli\'nski},
     title = {On the algebra of constants of polynomial derivations in two variables},
     journal = {Colloquium Mathematicae},
     volume = {84/85},
     year = {2000},
     pages = {267-269},
     zbl = {1057.13017},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv83i2p267bwm}
}
Zieliński, Janusz. On the algebra of constants of polynomial derivations in two variables. Colloquium Mathematicae, Tome 84/85 (2000) pp. 267-269. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv83i2p267bwm/

[000] [1] A. Nowicki, Polynomial Derivations and Their Rings of Constants, N. Copernicus University Press, Toruń, 1994. | Zbl 1236.13023

[001] [2] S. Sato, On the ring of constants of a derivation of ℝ[x,y], Rep. Fac. Engrg. Oita Univ. 39 (1999), 13-16.