Let d be a k-derivation of k[x,y], where k is a field of characteristic zero. Denote by the unique extension of d to k(x,y). We prove that if ker d ≠ k, then ker = (ker d)0, where (ker d)0 is the field of fractions of ker d.
@article{bwmeta1.element.bwnjournal-article-cmv83i2p267bwm, author = {Janusz Zieli\'nski}, title = {On the algebra of constants of polynomial derivations in two variables}, journal = {Colloquium Mathematicae}, volume = {84/85}, year = {2000}, pages = {267-269}, zbl = {1057.13017}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv83i2p267bwm} }
Zieliński, Janusz. On the algebra of constants of polynomial derivations in two variables. Colloquium Mathematicae, Tome 84/85 (2000) pp. 267-269. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv83i2p267bwm/
[000] [1] A. Nowicki, Polynomial Derivations and Their Rings of Constants, N. Copernicus University Press, Toruń, 1994. | Zbl 1236.13023
[001] [2] S. Sato, On the ring of constants of a derivation of ℝ[x,y], Rep. Fac. Engrg. Oita Univ. 39 (1999), 13-16.