We study norm convergence of Bochner-Riesz means associated with certain non-negative differential operators. When the kernel satisfies a weak estimate for large values of m we prove norm convergence of for δ > n|1/p-1/2|, 1 < p < ∞, where n is the dimension of the underlying manifold.
@article{bwmeta1.element.bwnjournal-article-cmv83i2p217bwm, author = {S. Thangavelu}, title = {Some remarks on Bochner-Riesz means}, journal = {Colloquium Mathematicae}, volume = {84/85}, year = {2000}, pages = {217-230}, zbl = {0968.42011}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv83i2p217bwm} }
Thangavelu, S. Some remarks on Bochner-Riesz means. Colloquium Mathematicae, Tome 84/85 (2000) pp. 217-230. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv83i2p217bwm/
[000] [1] A. Bonami et J. L. Clerc, Sommes de Cesàro et multiplicateurs des développements en harmoniques sphériques, Trans. Amer. Math. Soc. 183 (1973), 223-263.
[001] [2] L. Carleson and P. Sjölin, Oscillatory integrals and multiplier problem for the disc, Studia Math. 44 (1972), 287-299. | Zbl 0215.18303
[002] [3] J. Dziubański, W. Hebisch and J. Zienkiewicz, Note on semigroups generated by positive Rockland operators on graded homogeneous groups, ibid. 110 (1994), 115-126. | Zbl 0833.43009
[003] [4] C. Fefferman, A note on spherical summation multipliers, Israel J. Math. 15 (1972), 44-52.
[004] [5] G. Folland and E. Stein, Hardy Spaces on Homogeneous Groups, Princeton Univ., Princeton, 1982. | Zbl 0508.42025
[005] [6] W. Hebisch, Almost everywhere summability of eigenfunction expansions associated to elliptic operators, Studia Math. 96 (1990), 263-275. | Zbl 0716.35053
[006] [7] B. Helffer et J. Nourrigat, Caractérisation des opérateurs hypoelliptiques homogènes à gauche sur un groupe nilpotent gradué, Comm. Partial Differential Equations 4 (1979), 899-958. | Zbl 0423.35040
[007] [8] L. Hörmander, On the Riesz means of spectral functions and eigenfunction expansions for elliptic differential operators, in: Some Recent Advances in the Basic Sciences, Vol. 2, Yeshiva Univ., New York, 1969, 155-202.
[008] [9] A. Hulanicki, A functional calculus for Rockland operators on nilpotent Lie groups, Studia Math. 78 (1984), 253-266. | Zbl 0595.43007
[009] [10] A. Hulanicki and J. Jenkins, Almost everywhere summability on nilmanifolds, Trans. Amer. Math. Soc. 278 (1983), 703-715. | Zbl 0516.43010
[010] [11] A. Hulanicki and J. Jenkins, Nilpotent Lie groups and summability of eigenfunction expansions of Schrödinger operators, Studia Math. 80 (1984), 235-244. | Zbl 0564.43007
[011] [12] G. Karadzhov, Riesz summability of multiple Hermite series in spaces, C. R. Acad. Bulgare Sci. 47 (1994), 5-8. | Zbl 0829.40003
[012] [13] C. E. Kenig, R. Stanton and P. Tomas, Divergence of eigenfunction expansions, J. Funct. Anal. 46 (1982), 28-44. | Zbl 0506.47014
[013] [14] G. Mauceri, Riesz means for the eigenfunction expansions for a class of hypoelliptic differential operators, Ann. Inst. Fourier (Grenoble) 31 (1981), no. 4, 115-140. | Zbl 0455.35039
[014] [15] G. Mauceri and S. Meda, Vector valued multipliers on stratified groups, Rev. Mat. Iberoamericana 6 (1990), 141-154. | Zbl 0763.43005
[015] [16] B. S. Mitjagin [B. S. Mityagin], Divergenz von Spektralentwicklungen in -Räumen, in: Linear Operators and Approximation II, Internat. Ser. Numer. Math. 25, Birkhäuser, Basel, 1974, 521-530.
[016] [17] D. Müller and E. M. Stein, On spectral multipliers for Heisenberg and related groups, J. Math. Pures Appl. 73 (1994), 413-440. | Zbl 0838.43011
[017] [18] J. Peetre, Remarks on eigenfunction expansions for elliptic differential operators with constant coefficients, Math. Scand. 15 (1964), 83-97. | Zbl 0131.09802
[018] [19] J. Peetre, Some estimates for spectral functions, Math. Z. 92 (1966), 146-153. | Zbl 0151.20204
[019] [20] C. D. Sogge, Concerning the norm of spectral clusters for second order elliptic operators on compact manifolds, J. Funct. Anal. 77 (1988), 123-134.
[020] [21] C. D. Sogge, On the convergence of Riesz means on compact manifolds, Ann. of Math. 126 (1987), 439-447. | Zbl 0653.35068
[021] [22] E. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, Princeton, 1971.
[022] [23] K. Stempak and J. Zienkiewicz, Twisted convolution and Riesz means, J. Anal. Math. 76 (1998), 93-107. | Zbl 0924.42011
[023] [24] S. Thangavelu, Lectures on Hermite and Laguerre Expansions, Princeton Univ. Press, Princeton, 1993.
[024] [25] S. Thangavelu, Hermite and special Hermite expansions revisited, Duke Math. J. 94 (1998), 257-278. | Zbl 0945.42014
[025] [26] S. Thangavelu, Harmonic Analysis on the Heisenberg Group, Progr. Math. 159, Birkhäuser, Boston, 1998 | Zbl 0892.43001