A geometric estimate for a periodic Schrödinger operator
Friedrich, Thomas
Colloquium Mathematicae, Tome 84/85 (2000), p. 209-216 / Harvested from The Polish Digital Mathematics Library

We estimate from below by geometric data the eigenvalues of the periodic Sturm-Liouville operator -4d2/ds2+κ2(s) with potential given by the curvature of a closed curve.

Publié le : 2000-01-01
EUDML-ID : urn:eudml:doc:210782
@article{bwmeta1.element.bwnjournal-article-cmv83i2p209bwm,
     author = {Thomas Friedrich},
     title = {A geometric estimate for a periodic Schr\"odinger operator},
     journal = {Colloquium Mathematicae},
     volume = {84/85},
     year = {2000},
     pages = {209-216},
     zbl = {0963.58011},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv83i2p209bwm}
}
Friedrich, Thomas. A geometric estimate for a periodic Schrödinger operator. Colloquium Mathematicae, Tome 84/85 (2000) pp. 209-216. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv83i2p209bwm/

[000] [1] I. Agricola and T. Friedrich, Upper bounds for the first eigenvalue of the Dirac operator on surfaces, J. Geom. Phys. 30 (1999), 1-22. | Zbl 0941.58018

[001] [2] C. Bär, Lower eigenvalues estimates for Dirac operators, Math. Ann. 293 (1992), 39-46. | Zbl 0741.58046

[002] [3] T. Friedrich, Der erste Eigenwert des Dirac-Operators einer kompakten Riemann- schen Mannigfaltigkeit nichtnegativer Skalarkrümmung, Math. Nachr. 97 (1980), 117-146. | Zbl 0462.53027

[003] [4] T. Friedrich, Zur Abhängigkeit des Dirac-Operators von der Spin-Struktur, Colloq. Math. 48 (1984), 57-62. | Zbl 0542.53026

[004] [5] T. Friedrich, On the spinor representation of surfaces in Euclidean 3-spaces, J. Geom. Phys. 28 (1998), 143-157. | Zbl 0966.53042

[005] [6] J. Lott, Eigenvalue bounds for the Dirac operator, Pacific J. Math. 125 (1986), 117-128. | Zbl 0605.58044

[006] [7] U. Pinkall, Hopf tori in S3, Invent. Math. 81 (1985), 379-386.

[007] [8] T. J. Willmore, Riemannian Geometry, Clarendon Press, Oxford, 1996.