We estimate from below by geometric data the eigenvalues of the periodic Sturm-Liouville operator with potential given by the curvature of a closed curve.
@article{bwmeta1.element.bwnjournal-article-cmv83i2p209bwm, author = {Thomas Friedrich}, title = {A geometric estimate for a periodic Schr\"odinger operator}, journal = {Colloquium Mathematicae}, volume = {84/85}, year = {2000}, pages = {209-216}, zbl = {0963.58011}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv83i2p209bwm} }
Friedrich, Thomas. A geometric estimate for a periodic Schrödinger operator. Colloquium Mathematicae, Tome 84/85 (2000) pp. 209-216. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv83i2p209bwm/
[000] [1] I. Agricola and T. Friedrich, Upper bounds for the first eigenvalue of the Dirac operator on surfaces, J. Geom. Phys. 30 (1999), 1-22. | Zbl 0941.58018
[001] [2] C. Bär, Lower eigenvalues estimates for Dirac operators, Math. Ann. 293 (1992), 39-46. | Zbl 0741.58046
[002] [3] T. Friedrich, Der erste Eigenwert des Dirac-Operators einer kompakten Riemann- schen Mannigfaltigkeit nichtnegativer Skalarkrümmung, Math. Nachr. 97 (1980), 117-146. | Zbl 0462.53027
[003] [4] T. Friedrich, Zur Abhängigkeit des Dirac-Operators von der Spin-Struktur, Colloq. Math. 48 (1984), 57-62. | Zbl 0542.53026
[004] [5] T. Friedrich, On the spinor representation of surfaces in Euclidean -spaces, J. Geom. Phys. 28 (1998), 143-157. | Zbl 0966.53042
[005] [6] J. Lott, Eigenvalue bounds for the Dirac operator, Pacific J. Math. 125 (1986), 117-128. | Zbl 0605.58044
[006] [7] U. Pinkall, Hopf tori in , Invent. Math. 81 (1985), 379-386.
[007] [8] T. J. Willmore, Riemannian Geometry, Clarendon Press, Oxford, 1996.