Fundamental solutions for translation and rotation invariant differential operators on the Heisenberg group
Gorelli, Priscilla
Colloquium Mathematicae, Tome 84/85 (2000), p. 183-200 / Harvested from The Polish Digital Mathematics Library
Publié le : 2000-01-01
EUDML-ID : urn:eudml:doc:210780
@article{bwmeta1.element.bwnjournal-article-cmv83i2p183bwm,
     author = {Priscilla Gorelli},
     title = {Fundamental solutions for translation and rotation invariant differential operators on the Heisenberg group},
     journal = {Colloquium Mathematicae},
     volume = {84/85},
     year = {2000},
     pages = {183-200},
     zbl = {0962.43003},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv83i2p183bwm}
}
Gorelli, Priscilla. Fundamental solutions for translation and rotation invariant differential operators on the Heisenberg group. Colloquium Mathematicae, Tome 84/85 (2000) pp. 183-200. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv83i2p183bwm/

[000] [1] C. Benson, A. H. Dooley and G. Ratcliff, Fundamental solutions for powers of the Heisenberg sub-laplacian}, Illinois J. Math. 37 (1993), 455-476. | Zbl 0789.22012

[001] [2] C. Benson, J. Jenkins, G. Ratcliff and T. Worku, Spectra for Gelfand pairs associated with the Heisenberg group, Colloq. Math. 71 (1996), 305-328. | Zbl 0876.22011

[002] [3] J. Bochnak, M. Coste et M.-F. Roy, Géométrie Algébrique Réelle, Ergeb. Math. Grenzgeb. 12, Springer, Berlin, 1987.

[003] [4] W. Chang, Invariant differential operators and P-convexity of solvable Lie groups, Adv. Math. 46 (1982), 284-304. | Zbl 0506.22012

[004] [5] A. Erdélyi, W. Magnus, F. Oberhettinger and F. G. Tricomi, Higher Transcendental Functions, Vol. 2, McGraw-Hill, 1953. | Zbl 0051.30303

[005] [6] G. B. Folland and E. M. Stein, Estimates for the verlineb complex and analysis on the Heisenberg group, Comm. Pure Appl. Math. 27 (1974), 429-522. | Zbl 0293.35012

[006] [7] L. Hörmander, Analysis of Linear Partial Differential Operators II, Springer, Berlin, 1983. | Zbl 0521.35002

[007] [8] L. Schwartz, z Théorie des distributions. Tome I, Hermann, Paris, 1957.

[008] [9] E. M. Stein, An example on the Heisenberg group related to the Lewy operator, Invent. Math. 69 (1982), 209-216. | Zbl 0515.58032

[009] [10] G. Szegő, Orthogonal Polynomials, Colloq.Publ. 23, Amer. Math. Soc., 1975.