Interpolation sets for Fréchet measures
Caggiano, J.
Colloquium Mathematicae, Tome 84/85 (2000), p. 161-172 / Harvested from The Polish Digital Mathematics Library

We introduce various classes of interpolation sets for Fréchet measures-the measure-theoretic analogues of bounded multilinear forms on products of C(K) spaces.

Publié le : 2000-01-01
EUDML-ID : urn:eudml:doc:210778
@article{bwmeta1.element.bwnjournal-article-cmv83i2p161bwm,
     author = {J. Caggiano},
     title = {Interpolation sets for Fr\'echet measures},
     journal = {Colloquium Mathematicae},
     volume = {84/85},
     year = {2000},
     pages = {161-172},
     zbl = {0963.43003},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv83i2p161bwm}
}
Caggiano, J. Interpolation sets for Fréchet measures. Colloquium Mathematicae, Tome 84/85 (2000) pp. 161-172. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv83i2p161bwm/

[000] [B1] R. C. Blei, Multi-dimensional extensions of the Grothendieck inequality and applications, Ark. Mat. 17 (1979), 51-68. | Zbl 0461.43005

[001] [B2] R. C. Blei, Rosenthal sets that cannot be sup-norm partitioned and an application to tensor products, Colloq. Math. 37 (1977), 295-298. | Zbl 0369.43004

[002] [B3] R. C. Blei, Fractional Cartesian products of sets, Ann. Inst. Fourier (Grenoble) 29 (1979), no. 2, 79-105. | Zbl 0381.43003

[003] [B4] R. C. Blei, Fractional dimensions and bounded fractional forms, Mem. Amer. Math. Soc. 331 (1985).

[004] [B5] R. C. Blei, Projectively bounded Fréchet measures, Trans. Amer. Math. Soc. 348 (1996), 4409-4432. | Zbl 0882.28012

[005] [BS] R. C. Blei and J. Schmerl, Combinatorial dimension and fractional Cartesian products, Proc. Amer. Math. Soc. 120 (1994), 73-77. | Zbl 0788.90048

[006] [CS] E. Christensen and A. M. Sinclair, Representations of completely bounded multilinear operators, J. Funct. Anal. 72 (1987), 151-181. | Zbl 0622.46040

[007] [D] A. M. Davie, Quotient algebras of uniform algebras, J. London Math. Soc. 7 (1973), 31-40. | Zbl 0264.46055

[008] [GMc] C. C. Graham and O. C. McGehee, Essays in Commutative Harmonic Analysis, Grundlehren Math. Wiss. 238, Springer, New York, 1979.

[009] [GS1] C. C. Graham and B. M. Schreiber, Bimeasure algebras on LCA groups, Pacific J. Math. 115 (1984), 91-127. | Zbl 0502.43005

[010] [GS2] C. C. Graham and B. M. Schreiber, Sets of interpolation for Fourier transforms of bimeasures, Colloq. Math. 51 (1987), 149-154. | Zbl 0629.43006

[011] [GS3] C. C. Graham and B. M. Schreiber, Projections in spaces of bimeasures, Canad. Math. Bull. 31 (1988), 19-25. | Zbl 0617.28013

[012] [G] A. Grothendieck, Résumé de la théorie métrique des produits tensoriels topologiques, Bol. Soc. Mat. Sao Paulo 8 (1956), 1-79. | Zbl 0074.32303

[013] [LP] J. Lindenstrauss and A. Pełczyński, Absolutely summing operators in p-spaces and their applications, Studia Math. 29 (1968), 275-326. | Zbl 0183.40501

[014] [R] W. Rudin, Trigonometric series with gaps, J. Math. Mech. 9 (1960), 203-227. | Zbl 0091.05802

[015] [V] N. Th. Varopoulos, On an inequality of von Neumann and an application of the metric theory of tensor products to operators theory, J. Funct. Anal. 16 (1974), 83-100.

[016] [Y] K. Ylinen, Noncommutative Fourier transforms of bounded bilinear forms and completely bounded multilinear operators, ibid. 79 (1988), 144-165. | Zbl 0663.46053

[017] [ZS] G. Zhao and B. M. Schreiber, Algebras of multilinear forms on groups, in: Contemp. Math. 189, Amer. Math. Soc., 1995, 497-511. | Zbl 0853.43004