Separation properties in congruence lattices of lattices
Ploščica, Miroslav
Colloquium Mathematicae, Tome 84/85 (2000), p. 71-84 / Harvested from The Polish Digital Mathematics Library

We investigate the congruence lattices of lattices in the varieties n. Our approach is to represent congruences by open sets of suitable topological spaces. We introduce some special separation properties and show that for different n the lattices in n have different congruence lattices.

Publié le : 2000-01-01
EUDML-ID : urn:eudml:doc:210775
@article{bwmeta1.element.bwnjournal-article-cmv83i1p71bwm,
     author = {Miroslav Plo\v s\v cica},
     title = {Separation properties in congruence lattices of lattices},
     journal = {Colloquium Mathematicae},
     volume = {84/85},
     year = {2000},
     pages = {71-84},
     zbl = {0961.06006},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv83i1p71bwm}
}
Ploščica, Miroslav. Separation properties in congruence lattices of lattices. Colloquium Mathematicae, Tome 84/85 (2000) pp. 71-84. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv83i1p71bwm/

[000] [1] D. Clark and B. A. Davey, Dualities for the Working Algebraist, Cambridge Univ. Press, 1998. | Zbl 0910.08001

[001] [2] B. A. Davey and H. Werner, Dualities and equivalences for varieties of algebras, in: Contributions to Lattice Theory, Colloq. Math. Soc. János Bolyai 33, North-Holland, 1983, 101-276.

[002] [3] G. Gierz, K. H. Hofmann, K. Keimel, J. D. Lawson, M. Mislove and D. S. Scott, A Compendium of Continuous Lattices, Springer, 1980. | Zbl 0452.06001

[003] [4] G. Grätzer, General Lattice Theory, 2nd ed., Birkhäuser, 1998. | Zbl 0909.06002

[004] [5] A. Hajnal and A. Máté, Set mappings, partitions and chromatic numbers, in: Logic Colloquium '73, Stud. Logic Found. Math. 80, North-Holland, 1975, 347-379.

[005] [6] J. L. Kelley, General Topology, Van Nostrand, 1955.

[006] [7] K. Kuratowski, Sur une caractérisation des alephs, Fund. Math. 38 (1951), 14-17. | Zbl 0044.27302

[007] [8] R. McKenzie, R. McNulty and W. Taylor, Algebras, Lattices, Varieties I, Wadsworth & Brooks/Cole, 1987.

[008] [9] M. Ploščica and J. Tůma, Uniform refinements in distributive semilattices, in: Contributions to General Algebra 10 (Klagenfurt '97), Verlag Johannes Heyn, 1998. | Zbl 0907.06002

[009] [10] M. Ploščica, J. Tůma and F. Wehrung, Congruence lattices of free lattices in nondistributive varieties, Colloq. Math. 76 (1998), 269-278. | Zbl 0904.06005

[010] [11] H. A. Priestley, Representation of distributive lattices by means of ordered Stone spaces, Bull. London Math. Soc. 2 (1970), 186-190. | Zbl 0201.01802

[011] [12] M. H. Stone, Topological representation of distributive lattices and Brouwerian logics, Čas. Pěst. Mat. Fyz. 67 (1937), 1-25. | Zbl 0018.00303

[012] [13] F. Wehrung, Non-measurability properties of interpolation vector spaces, Israel J. Math. 103 (1998), 177-206. | Zbl 0916.06018

[013] [14] F. Wehrung, A uniform refinement property of certain congruence lattices, Proc. Amer. Math. Soc. 127 (1999), 363-370. | Zbl 0902.06006