We investigate the congruence lattices of lattices in the varieties . Our approach is to represent congruences by open sets of suitable topological spaces. We introduce some special separation properties and show that for different n the lattices in have different congruence lattices.
@article{bwmeta1.element.bwnjournal-article-cmv83i1p71bwm, author = {Miroslav Plo\v s\v cica}, title = {Separation properties in congruence lattices of lattices}, journal = {Colloquium Mathematicae}, volume = {84/85}, year = {2000}, pages = {71-84}, zbl = {0961.06006}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv83i1p71bwm} }
Ploščica, Miroslav. Separation properties in congruence lattices of lattices. Colloquium Mathematicae, Tome 84/85 (2000) pp. 71-84. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv83i1p71bwm/
[000] [1] D. Clark and B. A. Davey, Dualities for the Working Algebraist, Cambridge Univ. Press, 1998. | Zbl 0910.08001
[001] [2] B. A. Davey and H. Werner, Dualities and equivalences for varieties of algebras, in: Contributions to Lattice Theory, Colloq. Math. Soc. János Bolyai 33, North-Holland, 1983, 101-276.
[002] [3] G. Gierz, K. H. Hofmann, K. Keimel, J. D. Lawson, M. Mislove and D. S. Scott, A Compendium of Continuous Lattices, Springer, 1980. | Zbl 0452.06001
[003] [4] G. Grätzer, General Lattice Theory, 2nd ed., Birkhäuser, 1998. | Zbl 0909.06002
[004] [5] A. Hajnal and A. Máté, Set mappings, partitions and chromatic numbers, in: Logic Colloquium '73, Stud. Logic Found. Math. 80, North-Holland, 1975, 347-379.
[005] [6] J. L. Kelley, General Topology, Van Nostrand, 1955.
[006] [7] K. Kuratowski, Sur une caractérisation des alephs, Fund. Math. 38 (1951), 14-17. | Zbl 0044.27302
[007] [8] R. McKenzie, R. McNulty and W. Taylor, Algebras, Lattices, Varieties I, Wadsworth & Brooks/Cole, 1987.
[008] [9] M. Ploščica and J. Tůma, Uniform refinements in distributive semilattices, in: Contributions to General Algebra 10 (Klagenfurt '97), Verlag Johannes Heyn, 1998. | Zbl 0907.06002
[009] [10] M. Ploščica, J. Tůma and F. Wehrung, Congruence lattices of free lattices in nondistributive varieties, Colloq. Math. 76 (1998), 269-278. | Zbl 0904.06005
[010] [11] H. A. Priestley, Representation of distributive lattices by means of ordered Stone spaces, Bull. London Math. Soc. 2 (1970), 186-190. | Zbl 0201.01802
[011] [12] M. H. Stone, Topological representation of distributive lattices and Brouwerian logics, Čas. Pěst. Mat. Fyz. 67 (1937), 1-25. | Zbl 0018.00303
[012] [13] F. Wehrung, Non-measurability properties of interpolation vector spaces, Israel J. Math. 103 (1998), 177-206. | Zbl 0916.06018
[013] [14] F. Wehrung, A uniform refinement property of certain congruence lattices, Proc. Amer. Math. Soc. 127 (1999), 363-370. | Zbl 0902.06006