We show that a quasitilted algebra has a preprojective component. This is proved by giving an algorithmic criterion for the existence of preprojective components.
@article{bwmeta1.element.bwnjournal-article-cmv83i1p55bwm, author = {Ole Enge}, title = {Quasitilted algebras have preprojective components}, journal = {Colloquium Mathematicae}, volume = {84/85}, year = {2000}, pages = {55-69}, zbl = {0962.16011}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv83i1p55bwm} }
Enge, Ole. Quasitilted algebras have preprojective components. Colloquium Mathematicae, Tome 84/85 (2000) pp. 55-69. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv83i1p55bwm/
[000] [1] M. Auslander, I. Reiten and S. O. Smalο, Representation Theory of Artin Algebras, Cambridge Univ. Press, 1995. | Zbl 0834.16001
[001] [2] B K. Bongartz, A criterion for finite representation type, Math. Ann. 269 (1984), 1-12. | Zbl 0552.16012
[002] [3] F. Coelho and D. Happel, Quasitilted algebras admit a preprojective component, Proc. Amer. Math. Soc. 125 (1997), 1283-1291. | Zbl 0880.16006
[003] [4] F. Coelho and A. Skowroński, On Auslander-Reiten components for quasitilted algebras, Fund. Math. 149 (1996), 67-82. | Zbl 0848.16012
[004] [5] P. Dräxler and J. A. de la Pe na, On the existence of postprojective components in the Auslander-Reiten quiver of an algebra, Tsukuba J. Math. 20 (1996), 457-469. | Zbl 0902.16017
[005] [6] O. Enge, I. H. Slungård and S. O. Smalο, Quasitilted extensions by nondirecting modules, preliminary manuscript, 1998.
[006] [7] D. Happel, I. Reiten and S. O. Smalο, Tilting in abelian categories and quasitilted algebras, Mem. Amer. Math. Soc. 575 (1996). | Zbl 0849.16011
[007] [8] D. Happel, I. Reiten and S. O. Smalο, Short cycles and sincere modules, in: CMS Conf. Proc. 14, Amer. Math. Soc., 1993, 233-237. | Zbl 0828.16009
[008] [9] D. Happel and C. M. Ringel, Directing projective modules, Arch. Math. (Basel) 60 (1993), 237-246. | Zbl 0795.16007
[009] [10] A. Skowroński and M. Wenderlich, Artin algebras with directing indecomposable projective modules, J. Algebra 165 (1994), 507-530. | Zbl 0841.16014
[010] [11] H. Strauss, The perpendicular category of a partial tilting module, ibid. 144 (1991), 43-66. | Zbl 0746.16009