Let R be a complete discrete valuation ring with quotient field K, L/K be a Galois extension with Galois group G and S be the integral closure of R in L. If a is a factor set of G with values in the group of units of S, then (L/K,a) (resp. Λ =(S/R,a)) denotes the crossed product K-algebra (resp. crossed product R -order in A). In this paper hermitian and quadratic forms on Λ -lattices are studied and the existence of at most two irreducible non-singular quadratic Λ -lattices is proved (Theorem 3.5). Further the orthogonal decomposition of an arbitrary non-singular quadratic Λ -lattice is given.
@article{bwmeta1.element.bwnjournal-article-cmv83i1p43bwm, author = {Y. Hatzaras and Th. Theohari-Apostolidi}, title = {Hermitian and quadratic forms over local classical crossed product orders}, journal = {Colloquium Mathematicae}, volume = {84/85}, year = {2000}, pages = {43-53}, zbl = {0959.16016}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv83i1p43bwm} }
Hatzaras, Y.; Theohari-Apostolidi, Th. Hermitian and quadratic forms over local classical crossed product orders. Colloquium Mathematicae, Tome 84/85 (2000) pp. 43-53. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv83i1p43bwm/
[000] [A] A. A. Albert, Structure of Algebras, Colloq. Publ. 24, Amer. Math. Soc., 1939, rev. ed., 1961. | Zbl 0023.19901
[001] [A-R-S] M. Auslander, I. Reiten and S. Smalο, Representation Theory of Artin Algebras, Cambridge Stud. Adv. Math. 36, Cambridge Univ. Press, 1995.
[002] [C-R] C. Curtis and I. Reiner, Methods of Representation Theory, Vol. I, Wiley, 1981.
[003] [Ch-Th] A. Chalatsis and Th. Theohari-Apostolidi, Maximal orders containing local crossed products, J. Pure Appl. Algebra 50 (1988), 211-222.
[004] [G-R] E. L. Green and I. Reiner, Integral representations and diagrams, Michigan Math. J. 25 (1978), 53-84. | Zbl 0365.16015
[005] [H-Th] Y. Hatzaras and Th. Theohari-Apostolidi, Involutions on classical crossed products, Comm. Algebra 24 (1996), 1003-1016.
[006] [Kel] G. M. Kelly, On the radical of a category, J. Austral. Math. Soc. 4 (1964), 299-307. | Zbl 0124.01501
[007] [Kn] M. A. Knus, Quadratic and Hermitian Forms over Rings, Grudlehren Math. Wiss. 294, Springer, Berlin 1991.
[008] [Q] H.-G. Quebbemann, Zur Klassifikation unimodularer Gitter mit Isometrie von Primzahlordnung, J. Reine Angew. Math. 326 (1981), 158-170. | Zbl 0452.10027
[009] [Q-S-S] H.-G. Quebbemann, W. Scharlau and M. Shulte, Quadratic and Hermitian forms in additive and abelian categories, J. Algebra 59 (1979), 264-289. | Zbl 0412.18016
[010] [Re] I. Reiner, Maximal Orders, Academic Press, 1975.
[011] [Ri] C. Riehm, Hermitian forms over local hereditary orders, Amer. J. Math. 106 (1984), 781-800. | Zbl 0556.10013
[012] [R-R] C. M. Ringel and K. W. Roggenkamp, Diagrammatic methods in the representation theory of orders, J. Algebra 60 (1979), 11-42. | Zbl 0438.16021
[013] [Sch] W. Scharlau, Quadratic and Hermitian Forms, Grudlehren Math. Wiss. 270, Springer, Berlin, 1985.
[014] [Sim] D. Simson, Linear Representations of Partially Ordered Sets and Vector Space Categories, Algebra Logic Appl. 4, Gordon & Breach, 1992. | Zbl 0818.16009
[015] [Th] Th. Theohari-Apostolidi, Local crossed product orders of finite representation type, J. Pure Appl. Algebra 41 (1986), 87-98.
[016] [Th-W] Th. Theohari-Apostolidi and A. Wiedemann, Integral representaions of local crossed products of finite type, Bayreuther Math. Schriften 40 (1992), 169-176. | Zbl 0749.16011