We prove a series of "going-up" theorems contrasting the structure of semiprime algebras and their subalgebras of invariants under the actions of Lie color algebras.
@article{bwmeta1.element.bwnjournal-article-cmv83i1p107bwm,
author = {Jeffrey Bergen and Piotr Grzeszczuk},
title = {Invariants of Lie color algebras acting on graded algebras},
journal = {Colloquium Mathematicae},
volume = {84/85},
year = {2000},
pages = {107-124},
zbl = {0971.17016},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv83i1p107bwm}
}
Bergen, Jeffrey; Grzeszczuk, Piotr. Invariants of Lie color algebras acting on graded algebras. Colloquium Mathematicae, Tome 84/85 (2000) pp. 107-124. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv83i1p107bwm/
[000] [BG1] J. Bergen and P. Grzeszczuk, Invariants of Lie superalgebras acting on associative algebras, Israel J. Math. 94 (1996), 403-428. | Zbl 0863.16028
[001] [BG2] J. Bergen and P. Grzeszczuk, Gradings, derivations, and automorphisms of some algebras which are nearly associative, J. Algebra 179 (1996), 732-750. | Zbl 0859.17002
[002] [CR] M. Cohen and L. Rowen, Group graded rings, Comm. Algebra 11 (1983), 1253-1270. | Zbl 0522.16001
[003] [J] N. Jacobson, A note on automorphisms and derivations of Lie algebras, Proc. Amer. Math. Soc. 6 (1955), 281-283. | Zbl 0064.27002
[004] [M] S. Montgomery, Hopf Algebras and Their Actions on Rings, CBMS Regional Conf. Ser. in Math. 82, Amer. Math. Soc., Providence, RI, 1993.
[005] [Sc] M. Scheunert, Generalized Lie algebras, J. Math. Phys. 20 (1979), 712-720. | Zbl 0423.17003