We evaluate the descriptive set theoretic complexity of the space of continuous surjections from to .
@article{bwmeta1.element.bwnjournal-article-cmv83i1p101bwm, author = {K. Omiljanowski and S. Solecki and J. Zielinski}, title = {Complexity of the class of Peano functions}, journal = {Colloquium Mathematicae}, volume = {84/85}, year = {2000}, pages = {101-105}, zbl = {0972.54024}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv83i1p101bwm} }
Omiljanowski, K.; Solecki, S.; Zielinski, J. Complexity of the class of Peano functions. Colloquium Mathematicae, Tome 84/85 (2000) pp. 101-105. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv83i1p101bwm/
[000] [1] J. J. Charatonik and T. Maćkowiak, Around Effros' theorem, Trans. Amer. Math. Soc. 298 (1986), 579-602. | Zbl 0608.54012
[001] [2] E. G. Effros, Transformation groups and C*-algebras, Ann. of Math. 81 (1965), 38-55. | Zbl 0152.33203
[002] [3] A. S. Kechris, On the concept of -completeness, Proc. Amer. Math. Soc. 125 (1997), 1811-1814.
[003] [4] A. S. Kechris, Classical Descriptive Set Theory, Springer, 1995.
[004] [5] P. Krupski, Homogeneity and Cantor manifolds, Proc. Amer. Math. Soc. 109 (1990), 1135-1142. | Zbl 0714.54035