Directing components for quasitilted algebras
Coelho, Flávio
Colloquium Mathematicae, Tome 79 (1999), p. 271-275 / Harvested from The Polish Digital Mathematics Library

We show here that a directing component of the Auslander-Reiten quiver of a quasitilted algebra is either postprojective or preinjective or a connecting component.

Publié le : 1999-01-01
EUDML-ID : urn:eudml:doc:210764
@article{bwmeta1.element.bwnjournal-article-cmv82i2pbwm,
     author = {Fl\'avio Coelho},
     title = {Directing components for quasitilted algebras},
     journal = {Colloquium Mathematicae},
     volume = {79},
     year = {1999},
     pages = {271-275},
     zbl = {0960.16018},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv82i2pbwm}
}
Coelho, Flávio. Directing components for quasitilted algebras. Colloquium Mathematicae, Tome 79 (1999) pp. 271-275. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv82i2pbwm/

[000] [1] M. Auslander, I. Reiten and S. O. Smalο, Representation Theory of Artin Algebras, Cambridge Univ. Press, 1995. | Zbl 0834.16001

[001] [2] S. Brenner and M. Butler, Generalizations of the Bernstein-Gelfand-Ponomarev reflection functors, in: Proc. ICRA II, Lecture Notes in Math. 832, Springer, 1980, 103-169. | Zbl 0446.16031

[002] [3] F. U. Coelho and D. Happel, Quasitilted algebras admit a preprojective component, Proc. Amer. Math. Soc. 125 (1997), 1283-1291. | Zbl 0880.16006

[003] [4] F. U. Coelho, Ma. I. R. Martins and J. A. de la Peña, Quasitilted extensions of algebras I, Proc. Amer. Math. Soc., to appear. | Zbl 0970.16009

[004] [5] F. U. Coelho, Ma. I. R. Martins and J. A. de la Peña, Quasitilted extensions of algebras II, J. Algebra, to appear.

[005] [6] F. U. Coelho and A. Skowroński, On Auslander-Reiten components for quasitilted algebras, Fund. Math. 149 (1996), 67-82. | Zbl 0848.16012

[006] [7] P. Dräxler and J. A. de la Peña, On the existence of postprojective components in the Auslander-Reiten quiver of an algebra, Tsukuba J. Math. 20 (1996), 457-469. | Zbl 0902.16017

[007] [8] D. Happel, I. Reiten and S. Smalο, Tilting in abelian categories and quasitilted algebras, Mem. Amer. Math. Soc. 575 (1996). | Zbl 0849.16011

[008] [9] D. Happel and C. Ringel, Tilted algebras, Trans. Amer. Math. Soc. 274 (1982), 399-443.

[009] [10] H. Lenzing and A. Skowroński, Quasi-tilted algebras of canonical type, Colloq. Math. 71 (1996), 161-181. | Zbl 0870.16007

[010] [11] S. Liu, The connected components of the Auslander-Reiten quiver of a tilted algebra, J. Algebra 61 (1993), 505-523. | Zbl 0818.16014

[011] [12] J. A. de la Peña and I. Reiten, Trisection of module categories, to appear.

[012] [13] A. Skowroński, Tame quasi-tilted algebras, J. Algebra 203 (1998), 470-490. | Zbl 0908.16013