On tubes for blocks of wild type
Erdmann, Karin
Colloquium Mathematicae, Tome 79 (1999), p. 261-270 / Harvested from The Polish Digital Mathematics Library

We show that any block of a group algebra of some finite group which is of wild representation type has many families of stable tubes.

Publié le : 1999-01-01
EUDML-ID : urn:eudml:doc:210761
@article{bwmeta1.element.bwnjournal-article-cmv82i2p261bwm,
     author = {Karin Erdmann},
     title = {On tubes for blocks of wild type},
     journal = {Colloquium Mathematicae},
     volume = {79},
     year = {1999},
     pages = {261-270},
     zbl = {0949.20002},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv82i2p261bwm}
}
Erdmann, Karin. On tubes for blocks of wild type. Colloquium Mathematicae, Tome 79 (1999) pp. 261-270. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv82i2p261bwm/

[000] [1] J. L. Alperin and M. Broué, Local methods in block theory, Ann. of Math. 110 (1979), 143-157. | Zbl 0416.20006

[001] [2] M. Auslander, I. Reiten and S. Smalο, Representation Theory of Artin Algebras, Cambridge Stud. Adv. Math. 36, Cambridge Univ. Press, 1994.

[002] [3] K. Erdmann, On modules with cyclic vertices in the Auslander-Reiten quiver, J. Algebra 104 (1986), 289-300. | Zbl 0602.20011

[003] [4] K. Erdmann, On the vertices of modules in the Auslander-Reiten quiver of p-groups, Math. Z. 203 (1990), 321-334. | Zbl 0664.20009

[004] [5] K. Erdmann, Blocks of Tame Representation Type and Related Algebras, Lecture Notes in Math. 1428, Springer, 1990. | Zbl 0696.20001

[005] [6] K. Erdmann, On Auslander-Reiten components for group algebras, J. Pure Appl. Algebra 104 (1995), 149-160. | Zbl 0839.20007

[006] [7] W. Feit, The Representation Theory of Finite Groups, North-Holland, 1982. | Zbl 0493.20007

[007] [8] J. A. Green, Functors on categories of finite group representations, J. Pure Appl. Algebra 37 (1985), 265-298. | Zbl 0567.20001

[008] [9] D. Happel, U. Preiser and C. M. Ringel, Vinberg’s characterization of Dynkin diagrams using subadditive functions with applications to DTr-periodic modules, in: Representation Theory II, Lecture Notes in Math. 832, Springer, 1981, 280-294.

[009] [10] S. Kawata, Module correspondences in Auslander-Reiten quivers for finite groups, Osaka J. Math. 26 (1989), 671-678. | Zbl 0705.20009

[010] [11] P. Landrock, Finite Group Algebras and Their Modules, London Math. Soc. Lecture Note Ser. 84, Cambridge Univ. Press, 1984. | Zbl 0523.20001

[011] [12] I. Reiten and A. Skowroński, Sincere stable tubes, preprint (Bielefeld 99-011).