We obtain a result on the existence of a solution with big graph of functional equations of the form g(x,𝜑(x),𝜑(f(x)))=0 and we show that it is applicable to some important equations, both linear and nonlinear, including those of Abel, Böttcher and Schröder. The graph of such a solution 𝜑 has some strange properties: it is dense and connected, has full outer measure and is topologically big.
@article{bwmeta1.element.bwnjournal-article-cmv82i2p223bwm, author = {Lech Bart\l omiejczyk}, title = {Solutions with big graph of iterative functional equations of the first order}, journal = {Colloquium Mathematicae}, volume = {79}, year = {1999}, pages = {223-230}, zbl = {0946.39006}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv82i2p223bwm} }
Bartłomiejczyk, Lech. Solutions with big graph of iterative functional equations of the first order. Colloquium Mathematicae, Tome 79 (1999) pp. 223-230. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv82i2p223bwm/
[000] [1] L. Bartłomiejczyk, Solutions with big graph of homogeneous functional equations in a single variable, Aequationes Math. 56 (1998), 149-156. | Zbl 0913.39014
[001] [2] L. Bartłomiejczyk, Solutions with big graph of the equation of invariant curves, submitted. | Zbl 0993.39015
[002] [3] L. Bartłomiejczyk, Iterative roots with big graph, submitted. | Zbl 1014.39500
[003] [4] L. Bartłomiejczyk, Solutions with big graph of an equation of the second iteration, submitted.
[004] [5] J. P. R. Christensen, On sets of Haar measure zero in abelian Polish groups, Israel J. Math. 13 (1972), 255-260.
[005] [6] J. P. R. Christensen, Topology and Borel Structure, North-Holland Math. Stud. 10, North-Holland, Amsterdam, 1974.
[006] [7] P. R. Halmos, Measure Theory, Grad. Texts in Math. 18, Springer, New York, 1974.
[007] [8] F. B. Jones, Connected and disconnected plane sets and the functional equation f(x)+f(y)=f(x+y), Bull. Amer. Math. Soc. 48 (1942), 115-120. | Zbl 0063.03063
[008] [9] P. Kahlig and J. Smítal, On the solutions of a functional equation of Dhombres, Results Math. 27 (1995), 362-367. | Zbl 0860.39030
[009] [10] M. Kuczma, Functional Equations in a Single Variable, Monografie Mat. 46, PWN-Polish Sci. Publ., Warszawa, 1968. | Zbl 0196.16403
[010] [11] M. Kuczma, An Introduction to the Theory of Functional Equations and Inequalities. Cauchy's Equation and Jensen's Inequality, Prace Nauk. Uniw. Śląskiego 489, PWN & Uniw. Śląski, Warszawa-Kraków-Katowice, 1985.
[011] [12] M. Kuczma, B. Choczewski and R. Ger, Iterative Functional Equations, Encyclopedia Math. Appl. 32, Cambridge Univ. Press, Cambridge, 1990. | Zbl 0703.39005
[012] [13] W. Kulpa, On the existence of maps having graphs connected and dense, Fund. Math. 76 (1972), 207-211. | Zbl 0245.54012
[013] [14] K. Kuratowski and A. Mostowski, Set Theory, Stud. Logic Found. Math. 86, PWN and North-Holland, Warszawa-Amsterdam, 1976.
[014] [15] K. R. Parthasarathy, Probability Measures on Metric Spaces, Academic Press, New York, 1967. | Zbl 0153.19101
[015] [16] Gy. Targonski, Topics in Iteration Theory, Vandenhoeck & Ruprecht, Göttingen, 1981. | Zbl 0454.39003