We point out the following fact: if Ω ⊂ is a bounded open set, δ>0, and p>1, then , where
@article{bwmeta1.element.bwnjournal-article-cmv82i2p219bwm, author = {Biagio Ricceri}, title = {A limit involving functions in $W^{1,p}\_0($\Omega$)$ }, journal = {Colloquium Mathematicae}, volume = {79}, year = {1999}, pages = {219-222}, zbl = {0954.46023}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv82i2p219bwm} }
Ricceri, Biagio. A limit involving functions in $W^{1,p}_0(Ω)$ . Colloquium Mathematicae, Tome 79 (1999) pp. 219-222. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv82i2p219bwm/
[000] [1] H. Brézis, Analyse fonctionnelle, Masson, 1983.
[001] [2] V. G. Maz'ja, Sobolev Spaces, Springer, 1985.