A limit involving functions in W01,p(Ω)
Ricceri, Biagio
Colloquium Mathematicae, Tome 79 (1999), p. 219-222 / Harvested from The Polish Digital Mathematics Library

We point out the following fact: if Ω ⊂ n is a bounded open set, δ>0, and p>1, then lim0+infVΩ|(x)|pdx=, where V=W01,p(Ω):meas(xΩ:|(x)|>δ)>.

Publié le : 1999-01-01
EUDML-ID : urn:eudml:doc:210758
@article{bwmeta1.element.bwnjournal-article-cmv82i2p219bwm,
     author = {Biagio Ricceri},
     title = {A limit involving functions in $W^{1,p}\_0($\Omega$)$
            },
     journal = {Colloquium Mathematicae},
     volume = {79},
     year = {1999},
     pages = {219-222},
     zbl = {0954.46023},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv82i2p219bwm}
}
Ricceri, Biagio. A limit involving functions in $W^{1,p}_0(Ω)$
            . Colloquium Mathematicae, Tome 79 (1999) pp. 219-222. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv82i2p219bwm/

[000] [1] H. Brézis, Analyse fonctionnelle, Masson, 1983.

[001] [2] V. G. Maz'ja, Sobolev Spaces, Springer, 1985.