We construct infinite measure preserving and nonsingular rank one -actions. The first example is ergodic infinite measure preserving but with nonergodic, infinite conservative index, basis transformations; in this case we exhibit sets of increasing finite and infinite measure which are properly exhaustive and weakly wandering. The next examples are staircase rank one infinite measure preserving -actions; for these we show that the individual basis transformations have conservative ergodic Cartesian products of all orders, hence infinite ergodic index. We generalize this example to obtain a stronger condition called power weakly mixing. The last examples are nonsingular -actions for each Krieger ratio set type with individual basis transformations with similar properties.
@article{bwmeta1.element.bwnjournal-article-cmv82i2p167bwm, author = {E. Muehlegger and A. Raich and C. Silva and M. Touloumtzis and B. Narasimhan and W. Zhao}, title = {Infinite ergodic index $$\mathbb{Z}$^d$ -actions in infinite measure}, journal = {Colloquium Mathematicae}, volume = {79}, year = {1999}, pages = {167-190}, zbl = {0940.28014}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv82i2p167bwm} }
Muehlegger, E.; Raich, A.; Silva, C.; Touloumtzis, M.; Narasimhan, B.; Zhao, W. Infinite ergodic index $ℤ^d$ -actions in infinite measure. Colloquium Mathematicae, Tome 79 (1999) pp. 167-190. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv82i2p167bwm/
[000] [ALW] J. Aaronson, M. Lin and B. Weiss, Mixing properties of Markov operators and ergodic transformations, and ergodicity of cartesian products, Israel J. Math. 33 (1979), 198-224. | Zbl 0438.28018
[001] [A] T. Adams, Uniformly sweeping out, PhD thesis, State University of New York at Albany, 1991. | Zbl 0799.28009
[002] [AFS] T. Adams, N. Friedman and C. Silva, Rank-one weak mixing for nonsingular transformations, Israel J. Math. 102 (1997), 269-281. | Zbl 0896.58039
[003] [AFS2] T. Adams, N. Friedman and C. Silva, Rank one power weakly mixing for nonsingular transformations, preprint.
[004] [AS] T. Adams and C. Silva, -staircase actions, Ergodic Theory Dynam. Systems 19 (1999), 837-850. | Zbl 0939.28013
[005] [C] J. Crabtree, Weakly wandering sets, B.A. thesis, Williams College, 1993.
[006] [DGMS] S. Day, B. Grivna, E. McCartney and C. Silva, Power weakly mixing infinite transformations, New York J. Math., to appear. | Zbl 0923.28006
[007] [EHK] S. Eigen, A. Hajian and S. Kakutani, Complementing sets of integers-a result from ergodic theory, Japan. J. Math. 18 (1992), 205-211. | Zbl 0756.11003
[008] [F] N. Friedman, Replication and stacking in ergodic theory, Amer. Math. Monthly 99 (1992), 31-41. | Zbl 0760.28012
[009] [HI] A. Hajian and Y. Ito, Weakly wandering sets and invariant measures for a group of transformations, J. Math. Mech. 18 (1969), 1203-1216. | Zbl 0189.05801
[010] [HK1] A. Hajian and S. Kakutani, Weakly wandering sets and invariant measures, Trans. Amer. Math. Soc. 110 (1964), 136-151. | Zbl 0122.29804
[011] [HK2] A. Hajian and S. Kakutani, An example of an ergodic measure preserving transformation on an infinite measure space, in: Lecture Notes in Math. 160, Springer, 1970, 45-52.
[012] [HO] T. Hamachi and Osikawa, Ergodic groups of automorphisms and Krieger's theorems, Seminar on Math. Sci. 3, Keio Univ., 1981. | Zbl 0472.28015
[013] [JK] L. K. Jones and U. Krengel, On transformations without finite invariant measure, Adv. Math. 12 (1974), 275-276. | Zbl 0286.28017
[014] [JS] A. del Junco and C. Silva, Prime type automorphisms: An instance of coding techniques applied to nonsingular maps, in: Algorithms, Fractals and Dynamics (Okayama/Kyoto, 1992), Y. Takahashi (ed.), Plenum Press, New York, 1995, 101-115.
[015] [KP] S. Kakutani and W. Parry, Infinite measure preserving transformations withi 'mixing', Bull. Amer. Math. Soc. 69 (1963), 752-756. | Zbl 0126.31801
[016] [Kre] U. Krengel, Ergodic Theorems, de Gruyter Stud. Math. 6, de Gruyter, Berlin, 1985.
[017] [Kri] U. Krengel, On the Araki-Woods asymptotic ratio set and nonsingular transformations of a measure space, in: Lecture Notes in Math. 160, Springer, 1970, 158-177.
[018] [PR] K. Park and E. A. Robinson, Jr., The joinings within a class of actions, J. Anal. Math. 57 (1991), 1-36.
[019] [Sch] K. Schmidt, Dynamical Systems of Algebraic Origin, Birkhäuser, 1995. | Zbl 0833.28001