Pieri-type formulas for maximal isotropic Grassmannians via triple intersections
Sottile, Frank
Colloquium Mathematicae, Tome 79 (1999), p. 49-63 / Harvested from The Polish Digital Mathematics Library

We give an elementary proof of the Pieri-type formula in the cohomology ring of a Grassmannian of maximal isotropic subspaces of an orthogonal or symplectic vector space. This proof proceeds by explicitly computing a triple intersection of Schubert varieties. The multiplicities (which are powers of 2) in the Pieri-type formula are seen to arise from the intersection of a collection of quadrics with a linear space.

Publié le : 1999-01-01
EUDML-ID : urn:eudml:doc:210750
@article{bwmeta1.element.bwnjournal-article-cmv82i1p49bwm,
     author = {Frank Sottile},
     title = {Pieri-type formulas for maximal isotropic Grassmannians via triple intersections},
     journal = {Colloquium Mathematicae},
     volume = {79},
     year = {1999},
     pages = {49-63},
     zbl = {0977.14023},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv82i1p49bwm}
}
Sottile, Frank. Pieri-type formulas for maximal isotropic Grassmannians via triple intersections. Colloquium Mathematicae, Tome 79 (1999) pp. 49-63. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv82i1p49bwm/

[000] [1] N. Bergeron and F. Sottile, A Pieri-type formula for isotropic flag manifolds, math.CO/9810025, 1999. | Zbl 0992.14014

[001] [2] C. Chevalley, Sur les décompositions cellulaires des espaces G/B, in: Algebraic Groups and their Generalizations: Classical Methods, W. Haboush (ed.), Proc. Sympos. Pure Math. 56, Part 1, Amer. Math. Soc., 1994, 1-23.

[002] [3] V. Deodhar, On some geometric aspects of Bruhat orderings. I. A finer decomposition of Bruhat cells, Invent. Math. 79 (1985), 499-511. | Zbl 0563.14023

[003] [4] W. Fulton, Intersection Theory, Ergeb. Math. Greuzgeb. 2, Springer, 1984. | Zbl 0541.14005

[004] [5] W. Fulton, Young Tableaux, Cambridge Univ. Press, 1997.

[005] [6] W. Fulton and P. Pragacz, Schubert Varieties and Degeneracy Loci, Lecture Notes in Math. 1689, Springer, 1998.

[006] [7] P. Griffiths and J. Harris, Principles of Algebraic Geometry, Wiley, 1978. | Zbl 0408.14001

[007] [8] H. Hiller and B. Boe, Pieri formula for SO2n+1/Un and Spn/Un, Adv. Math. 62 (1986), 49-67.

[008] [9] W. V. D. Hodge, The intersection formula for a Grassmannian variety, J. London Math. Soc. 17 (1942), 48-64. | Zbl 0028.08302

[009] [10] W. V. D. Hodge and D. Pedoe, Methods of Algebraic Geometry, Vol. II, Cambridge Univ. Press, 1952. | Zbl 0048.14502

[010] [11] S. Kleiman, The transversality of a general translate, Compositio Math. 28 (1974), 287-297. | Zbl 0288.14014

[011] [12] P. Pragacz, Algebro-geometric applications of Schur S- and Q-polynomials, in: Topics in Invariant Theory, Lecture Notes in Math. 1478, Springer, 1991, 130-191. | Zbl 0783.14031

[012] [13] P. Pragacz and J. Ratajski, Pieri type formula for isotropic Grassmannians; the operator approach, Manuscripta Math. 79 (1993), 127-151. | Zbl 0789.14041

[013] [14] P. Pragacz and J. Ratajski, Pieri-type formula for Lagrangian and odd orthogonal Grassmannians, J. Reine Angew. Math. 476 (1996), 143-189. | Zbl 0847.14029

[014] [15] P. Pragacz and J. Ratajski, A Pieri-type theorem for even orthogonal Grassmannians, Max-Planck Institut preprint, 1996. | Zbl 0847.14029

[015] [16] S. Sertöz, A triple intersection theorem for the varieties SO(n)/Pd, Fund. Math. 142 (1993), 201-220. | Zbl 0837.14040

[016] [17] F. Sottile, Pieri's formula for flag manifolds and Schubert polynomials, Ann. Inst. Fourier (Grenoble) 46 (1996), 89-110. | Zbl 0837.14041