For a split graph order ℒ over a complete local regular domain of dimension 2 the indecomposable Cohen-Macaulay modules decompose - up to irreducible projectives - into a union of the indecomposable Cohen-Macaulay modules over graph orders of type •—• . There, the Cohen-Macaulay modules filtered by irreducible Cohen-Macaulay modules are in bijection to the homomorphisms under the bi-action of the groups , where for a prime π. This problem strongly depends on the nature of . If is regular, then the category of indecomposable filtered Cohen-Macaulay modules is bounded. This latter condition is satisfied if ℒ is the completion of the Hecke order of the dihedral group of order 2p with p an odd prime at the maximal ideal 〈q-1,p〉, and more generally of blocks of defect p of complete Hecke orders. If is not regular, then the category of indecomposable filtered Cohen-Macaulay modules is unbounded.
@article{bwmeta1.element.bwnjournal-article-cmv82i1p25bwm, author = {Klaus Roggenkamp}, title = {Cohen-Macaulay modules over two-dimensional graph orders}, journal = {Colloquium Mathematicae}, volume = {79}, year = {1999}, pages = {25-48}, zbl = {0945.16013}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv82i1p25bwm} }
Roggenkamp, Klaus. Cohen-Macaulay modules over two-dimensional graph orders. Colloquium Mathematicae, Tome 79 (1999) pp. 25-48. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv82i1p25bwm/
[000] [AuRe; 89] M. Auslander and I. Reiten, The Cohen-Macaulay type of Cohen-Macaulay rings, Adv. Math. 73 (1989), 1-23. | Zbl 0744.13003
[001] [DrRo; 67] Ju. A. Drozd and A. V. Roiter, Commutative rings with a finite number of integral indecomposable representations, Izv. Akad. Nauk SSSR 31 (1967), 783-798. | Zbl 0169.35901
[002] [GaRi; 79] P. Gabriel and C. Riedtmann, Group representations without groups, Comm. Math. Helv. 54 (1979), 240-287. | Zbl 0447.16023
[003] [Gr; 74] J. A. Green, Walking around the Brauer tree, J. Austral. Math. Soc. 17 (1974), 197-213. | Zbl 0299.20006
[004] [Ka; 97] M. Kauer, Derived equivalences of graph order, Ph.D. thesis, Shaker Verlag, 1998. | Zbl 0921.16006
[005] [KaRo; 98] M. Kauer and K. W. Roggenkamp, Higher dimensional orders, graph-orders, and derived equivalences, J. Pure Appl. Algebra, to appear. | Zbl 0973.16013
[006] [Mu; 88] D. Mumford, The Red Book of Varieties and Schemes, Lecture Notes in Math. 1358, Springer, 1988. | Zbl 0658.14001
[007] [Na; 62] M. Nagata, Local Rings, Interscience, New York, 1962.
[008] [Re; 75] I. Reiner, Maximal Orders, Academic Press, 1975.
[009] [Ro; 70] K. W. Roggenkamp, Lattices over Orders II, Lecture Notes in Math. 142, Springer, 1970.
[010] [Ro; 92] K. W. Roggenkamp, Blocks with cyclic defect and Green orders, Comm. Algebra 20 (1992), 1715-1734. | Zbl 0748.20006
[011] [Ro; 96] K. W. Roggenkamp, Generalized Brauer tree orders, Colloq. Math. 71 (1996), 225-242.
[012] [Ro; 97] K. W. Roggenkamp, The cell-structure of integral group rings of dihedral groups, in: Sem. Ser. Math. Algebra, Ovidius Univ., Constanţa, to appear. | Zbl 0977.20001
[013] [Ro; 98] K. W. Roggenkamp, The cell structure, the Brauer tree structure and extensions of cell-modules for Hecke orders of dihedral groups, MS, Stuttgart, 1997. | Zbl 0996.16011
[014] [Ro; 98 I] K. W. Roggenkamp, The structure over of Hecke orders of dihedral groups, J. Algebra, to appear. | Zbl 0955.16020
[015] [RoRu; 98] K. W. Roggenkamp and W. Rump, Orders in non-semisimple algebras, Comm. Algebra 27 (1999), 5267-5303.
[016] [Ru; 98] W. Rump, Green walks in a hypergraph, Colloq. Math. 78 (1998), 133-147. | Zbl 0938.16008