Let R=k(Q,I) be a finite-dimensional algebra over a field k determined by a bound quiver (Q,I). We show that if R is a simply connected right multipeak algebra which is chord-free and -free in the sense defined below then R has the separation property and there exists a preprojective component of the Auslander-Reiten quiver of the category prin(R) of prinjective R-modules. As a consequence we get in 4.6 a criterion for finite representation type of prin(R) in terms of the prinjective Tits quadratic form of R.
@article{bwmeta1.element.bwnjournal-article-cmv82i1p137bwm, author = {Stanis\l aw Kasjan}, title = {Simply connected right multipeak algebras and the separation property}, journal = {Colloquium Mathematicae}, volume = {79}, year = {1999}, pages = {137-153}, zbl = {0953.16014}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv82i1p137bwm} }
Kasjan, Stanisław. Simply connected right multipeak algebras and the separation property. Colloquium Mathematicae, Tome 79 (1999) pp. 137-153. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv82i1p137bwm/
[000] [1] I. Assem and A. Skowroński, On some classes of simply connected algebras, Proc. London Math. Soc. 56 (1988), 417-450. | Zbl 0617.16018
[001] [2] R. Bautista, F. Larrión and L. Salmerón, On simply connected algebras, J. London Math. Soc. 27 (1983), 212-220. | Zbl 0511.16022
[002] [3] K. Bongartz, A criterion for finite representation type, Math. Ann. 269 (1984), 1-12. | Zbl 0552.16012
[003] [4] K. Bongartz and P. Gabriel, Covering spaces in representation theory, Invent. Math. 65 (1982), 331-378. | Zbl 0482.16026
[004] [5] O. Bretscher and P. Gabriel, The standard form of a representation-finite algebra, Bull. Soc. Math. France 111 (1983), 21-40. | Zbl 0527.16021
[005] [6] P. Dräxler, Completely separating algebras, J. Algebra 165 (1994), 550-565. | Zbl 0804.16017
[006] [7] G E. L. Green, Group-graded algebras and the zero relation problem, in: Lecture Notes in Math. 903, Springer, Berlin, 1981, 106-115.
[007] [8] H.-J. von Höhne and D. Simson, Bipartite posets of finite prinjective type, J. Algebra 201 (1998), 86-114. | Zbl 0921.16004
[008] [9] K S. Kasjan, Bound quivers of three-separate stratified posets, their Galois coverings and socle projective representations, Fund. Math. 143 (1993), 259-279. | Zbl 0806.16011
[009] [10] R. Martínez-Villa and J. A. de la Pe na, The universal cover of a quiver with relations, J. Pure. Appl. Algebra 30 (1983), 277-292. | Zbl 0522.16028
[010] [11] J. A. de la Pe na and D. Simson, Prinjective modules, reflection functors, quadratic forms and Auslander-Reiten sequences, Trans. Amer. Math. Soc. 329 (1992), 733-753. | Zbl 0789.16010
[011] [12] Z. Pogorzały, On star-free bound quivers, Bull. Polish Acad. Sci. Math. 37 (1989), 255-267. | Zbl 0785.16008
[012] [13] D. Simson, Socle reductions and socle projective modules, J. Algebra 103 (1986), 18-68. | Zbl 0599.16014
[013] [14] D. Simson, A splitting theorem for multipeak path algebras, Fund. Math. 138 (1991), 112-137. | Zbl 0780.16010
[014] [15] D. Simson, Linear Representations of Partially Ordered Sets and Vector Space Categories, Algebra Logic Appl. 4, Gordon & Breach, 1992. | Zbl 0818.16009
[015] [16] D. Simson, Right peak algebras of two-separate stratified posets, their Galois coverings and socle projective modules, Comm. Algebra 20 (1992), 3541-3591. | Zbl 0791.16011
[016] [17] D. Simson, Posets of finite prinjective type and a class of orders, J. Pure Appl. Algebra 90 (1993), 77-103. | Zbl 0815.16006
[017] [18] D. Simson, Three-partite subamalgams of tiled orders of finite lattice type, ibid. 138 (1999), 151-184. | Zbl 0928.16014
[018] [19] D. Simson, Representation types, Tits reduced quadratic forms and orbit problems for lattices over orders, in: Contemp. Math. 229, Amer. Math. Soc., 1998, 307-342. | Zbl 0921.16007
[019] [20] D. Simson, Three-partite subamalgams of tiled orders of polynomial growth, Colloq. Math. 82 (1999), in press. | Zbl 0937.16020
[020] [21] A. Skowroński, Simply connected algebras and Hochschild cohomologies, in: Proc. Sixth Internat. Conf. on Representations of Algebras, CMS Conf. Proc. 14, Amer. Math. Soc., 1992, 431-447. | Zbl 0806.16012
[021] [22] H. Spanier, Algebraic Topology, McGraw-Hill, 1966.