We solve Matkowski's problem for strictly comparable quasi-arithmetic means.
@article{bwmeta1.element.bwnjournal-article-cmv82i1p117bwm, author = {Zolt\'an Dar\'oczy and Gyula Maksa}, title = {On a problem of Matkowski}, journal = {Colloquium Mathematicae}, volume = {79}, year = {1999}, pages = {117-123}, zbl = {0956.39018}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv82i1p117bwm} }
Daróczy, Zoltán; Maksa, Gyula. On a problem of Matkowski. Colloquium Mathematicae, Tome 79 (1999) pp. 117-123. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv82i1p117bwm/
[000] [1] J. Aczél, Lectures on Functional Equations and Their Applications, Academic Press, New York, 1966. | Zbl 0139.09301
[001] [2] Z. Daróczy, On a class of means of two variables, Publ. Math. Debrecen 55 (1999), 177-197. | Zbl 0932.39019
[002] [3] Z. Daróczy and Zs. Páles, On means that are both quasi-arithmetic and conjugate arithmetic, Acta Math. Hungar., submitted.
[003] [4] G. H. Hardy, J. E. Littlewood and G. Pólya, Inequalities, Cambridge Univ. Press., Cambridge, 1934.
[004] [5] M. Kuczma, An Introduction to the Theory of Functional Equations and Inequalities, Cauchy's Equation and Jensen's Inequality, Uniw. Śląski and PWN, Katowice-Kraków-Warszawa, 1985.
[005] [6] J. Matkowski, Invariant and complementary quasi-arithmetic means, Aequationes Math. 57 (1999), 87-107. | Zbl 0930.26014
[006] [7] J. Matkowski, Complementary quasi-arithmetic means, in: Leaflets in Mathematics, Proc. Numbers, Functions, Equations '98 Internat. Conf. Noszvaj (Hungary), Pécs, 1998, 123-124.
[007] [8] A. W. Roberts and D. E. Varberg, Convex Functions, Academic Press, New York, 1973. | Zbl 0271.26009