Fans are not c-determined
Illanes, Alejandro
Colloquium Mathematicae, Tome 79 (1999), p. 299-308 / Harvested from The Polish Digital Mathematics Library

A continuum is a compact connected metric space. For a continuum X, let C(X) denote the hyperspace of subcontinua of X. In this paper we construct two nonhomeomorphic fans (dendroids with only one ramification point) X and Y such that C(X) and C(Y) are homeomorphic. This answers a question by Sam B. Nadler, Jr.

Publié le : 1999-01-01
EUDML-ID : urn:eudml:doc:210742
@article{bwmeta1.element.bwnjournal-article-cmv81i2p299bwm,
     author = {Alejandro Illanes},
     title = {Fans are not c-determined},
     journal = {Colloquium Mathematicae},
     volume = {79},
     year = {1999},
     pages = {299-308},
     zbl = {0965.54014},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv81i2p299bwm}
}
Illanes, Alejandro. Fans are not c-determined. Colloquium Mathematicae, Tome 79 (1999) pp. 299-308. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv81i2p299bwm/

[000] [1] G. Acosta, Hyperspaces with unique hyperspace, preprint. | Zbl 1046.54024

[001] [2] R. D. Anderson, Topological properties of the Hilbert cube and the infinite product of open intervals, Trans. Amer. Math. Soc. 126 (1967), 200-216. | Zbl 0152.12601

[002] [3] R. Duda, On the hyperspace of subcontinua of a finite graph, I, Fund. Math. 69 (1968), 265-286. | Zbl 0167.51401

[003] [4] C. Eberhart and S. B. Nadler, Jr., Hyperspaces of cones and fans, Proc. Amer. Math. Soc. 77 (1979), 279-288. | Zbl 0413.57010

[004] [5] A. Illanes, Chainable continua are not C-determined, Topology Appl., to appear. | Zbl 0964.54004

[005] [6] J. Krasinkiewicz, On the hyperspaces of snake-like and circle-like continua, Fund. Math. 83 (1974), 155-164. | Zbl 0271.54024

[006] [7] S. Macías, On C-determined continua, Glas. Mat., to appear.

[007] [8] S. Macías, Hereditarily indecomposable continua have unique hyperspace 2X, preprint. | Zbl 0938.54010

[008] [9] S. B. Nadler, Jr., Hyperspaces of Sets, Monographs Textbooks Pure Appl. Math. 49, Marcel Dekker, New York, 1978.

[009] [10] L. E. Ward, Extending Whitney maps, Pacific J. Math. 93 (1981), 465-469. | Zbl 0457.54008