On peaks in carrying simplices
Mierczyński, Janusz
Colloquium Mathematicae, Tome 79 (1999), p. 285-292 / Harvested from The Polish Digital Mathematics Library

A necessary and sufficient condition is given for the carrying simplex of a dissipative totally competitive system of three ordinary differential equations to have a peak singularity at an axial equilibrium. For systems of Lotka-Volterra type that result translates into a simple condition on the coefficients.

Publié le : 1999-01-01
EUDML-ID : urn:eudml:doc:210740
@article{bwmeta1.element.bwnjournal-article-cmv81i2p285bwm,
     author = {Janusz Mierczy\'nski},
     title = {On peaks in carrying simplices},
     journal = {Colloquium Mathematicae},
     volume = {79},
     year = {1999},
     pages = {285-292},
     zbl = {0936.34036},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv81i2p285bwm}
}
Mierczyński, Janusz. On peaks in carrying simplices. Colloquium Mathematicae, Tome 79 (1999) pp. 285-292. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv81i2p285bwm/

[000] [1] E. Akin, The General Topology of Dynamical Systems, Grad. Stud. Math. 1, Amer. Math. Soc., Providence, RI, 1993. | Zbl 0781.54025

[001] [2] M. Benaïm, On invariant hypersurfaces of strongly monotone maps, J. Differential Equations 137 (1997), 302-319. | Zbl 0889.58013

[002] [3] P. Brunovský, Controlling nonuniqueness of local invariant manifolds, J. Reine Angew. Math. 446 (1994), 115-135. | Zbl 0783.58061

[003] [4] C. Conley, Isolated Invariant Sets and the Morse Index, CBMS Regional Conf. Ser. in Math. 38, Amer. Math. Soc., Providence, RI, 1978.

[004] [5] J. K. Hale, Asymptotic Behavior of Dissipative Systems, Math. Surveys Mono- graphs 25, Amer. Math. Soc., Providence, RI, 1988.

[005] [6] M. W. Hirsch, Systems of differential equations which are competitive or cooperative. III. Competing species, Nonlinearity 1 (1988), 51-71. | Zbl 0658.34024

[006] [7] M. W. Hirsch, C. C. Pugh and M. Shub, Invariant Manifolds, Lecture Notes in Math. 583, Springer, Berlin, 1977.

[007] [8] J. Mierczyński, The C1 property of carrying simplices for a class of competitive systems of ODEs, J. Differential Equations 111 (1994), 385-409. | Zbl 0804.34048

[008] [9] J. Mierczyński, On smoothness of carrying simplices, Proc. Amer. Math. Soc. 127 (1999), 543-551. | Zbl 0912.34037

[009] [10] J. Mierczyński, Smoothness of carrying simplices for three-dimensional competitive systems: A counterexample, Dynam. Contin. Discrete Impuls. Systems 6 (1999), 149-154.

[010] [11] --, Smoothness of unordered invariant curves for two-dimensional strongly competitive systems, Appl. Math. (Warsaw) 25 (1999), 449-455. | Zbl 1005.34042

[011] [12] I. Tereščák, Dynamics of C1 smooth strongly monotone discrete-time dynamical systems, preprint.

[012] [13] M. L. Zeeman, Hopf bifurcations in competitive three-dimensional Lotka-Volterra systems, Dynam. Stability Systems 8 (1993), 189-217. | Zbl 0797.92025