Wold decomposition of the Hardy space and Blaschke products similar to a contraction
Stessin, M.
Colloquium Mathematicae, Tome 79 (1999), p. 271-284 / Harvested from The Polish Digital Mathematics Library

The classical Wold decomposition theorem applied to the multiplication by an inner function leads to a special decomposition of the Hardy space. In this paper we obtain norm estimates for componentwise projections associated with this decomposition. An application to operators similar to a contraction is given.

Publié le : 1999-01-01
EUDML-ID : urn:eudml:doc:210739
@article{bwmeta1.element.bwnjournal-article-cmv81i2p271bwm,
     author = {M. Stessin},
     title = {Wold decomposition of the Hardy space and Blaschke products similar to a contraction},
     journal = {Colloquium Mathematicae},
     volume = {79},
     year = {1999},
     pages = {271-284},
     zbl = {0980.30026},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv81i2p271bwm}
}
Stessin, M. Wold decomposition of the Hardy space and Blaschke products similar to a contraction. Colloquium Mathematicae, Tome 79 (1999) pp. 271-284. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv81i2p271bwm/

[000] [1] P. R. Ahern and D. N. Clark, On inner functions with Bp derivatives, Michigan Math. J. 23 (1976), 393-396.

[001] [2] A. B. Aleksandrov, Multiplicity of boundary values of inner functions, Izv. Akad. Nauk Armyan. SSR Ser. Mat. 22 (1987), 490-503 (in Russian).

[002] [3] A. B. Aleksandrov, Inner functions and related spaces of pseudocontinuable functions, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 170 (1989), 7-33 (in Russian); English transl.: J. Soviet Math. 63 (2) (1993). | Zbl 0761.30017

[003] [4] W. B. Arveson, Subalgebras of C*-algebras, Acta Math. 123 (1969), 141-224.

[004] [5] C. L. Belna, P. Colwell and G. Piranian, The radial limits of Blaschke products, Proc. Amer. Math. Soc. 93 (1985), 267-271. | Zbl 0582.30022

[005] [6] D. N. Clark, One dimensional perturbations of restricted shifts, J. Anal. Math. 25 (1972), 169-191. | Zbl 0252.47010

[006] [7] J. L. Doob, Measure Theory, Springer, New York, 1994.

[007] [8] P. R. Halmos, Ten problems in Hilbert space, Bull. Amer. Math. Soc. 76 (1970), 887-933. | Zbl 0204.15001

[008] [9] P. R. Halmos, Shifts on Hilbert spaces, J. Reine Angew. Math. 208 (1961), 102-112. | Zbl 0107.09802

[009] [10] T. L. Lance and M. I. Stessin, Multiplication invariant subspaces of Hardy spaces, Canad. J. Math. 49 (1997), 100-118. | Zbl 0879.47015

[010] [11] P. Lax, Translation invariant subspaces, Acta Math. 101 (1959), 163-178. | Zbl 0085.09102

[011] [12] V. Mascioni, Ideals of the disk algebra, operators related to Hilbert space contractions and complete boundedness, Houston J. Math. 20 (1994), 299-311. | Zbl 0819.46038

[012] [13] J. von Neumann, Eine Spektraltheorie für allgemeine Operatoren eines unitären Raumes, Math. Nachr. 4 (1950/51), 258-281. | Zbl 0042.12301

[013] [14] V. I. Paulsen, Every completely polynomially bounded operator is similar to a contraction, J. Funct. Anal. 55 (1984), 1-17. | Zbl 0557.46035

[014] [15] A. G. Poltoratski, The boundary behavior of pseudocontinuable functions, St. Petersburg Math. J. 5 (1994), 389-406.

[015] [16] A. G. Poltoratski, On the distributions of the boundary values of Cauchy integrals, Proc. Amer. Math. Soc. 124 (1996), 2455-2463. | Zbl 0855.30032

[016] [17] W. Rudin, Boundary values of continuous analytic functions, ibid. 7 (1956), 808-811. | Zbl 0073.29701

[017] [18] W. Rudin, Function Theory in the Unit Ball of Cn, Springer, New York, 1980. | Zbl 0495.32001