Let k be a field of characteristic zero. We describe the kernel of any quadratic homogeneous derivation d:k[x,y,z] → k[x,y,z] of the form , called the Lotka-Volterra derivation, where A,B,C ∈ k.
@article{bwmeta1.element.bwnjournal-article-cmv81i2p263bwm, author = {Jean Moulin Ollagnier and Andrzej Nowicki}, title = {Polynomial algebra of constants of the Lotka-Volterra system}, journal = {Colloquium Mathematicae}, volume = {79}, year = {1999}, pages = {263-270}, zbl = {1004.12004}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv81i2p263bwm} }
Moulin Ollagnier, Jean; Nowicki, Andrzej. Polynomial algebra of constants of the Lotka-Volterra system. Colloquium Mathematicae, Tome 79 (1999) pp. 263-270. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv81i2p263bwm/
[000] [1] B. Grammaticos, J. Moulin Ollagnier, A. Ramani, J.-M. Strelcyn and S. Wojciechowski, Integrals of quadratic ordinary differential equations in : the Lotka-Volterra system, Phys. A 163 (1990), 683-722. | Zbl 0714.34005
[001] [2] J. Moulin Ollagnier, Polynomial first integrals of the Lotka-Volterra system, Bull. Sci. Math. 121 (1997), 463-476. | Zbl 0887.34002
[002] [3] J. Moulin Ollagnier, Rational integration of the Lotka-Volterra system, ibid. 123 (1999), 437-466.
[003] [4] J. Moulin Ollagnier, A. Nowicki and J.-M. Strelcyn, On the non-existence of constants of derivations: the proof of a theorem of Jouanolou and its development, ibid. 119 (1995), 195-233. | Zbl 0855.34010
[004] [5] A. Nowicki, Polynomial derivations and their rings of constants, N. Copernicus University Press, Toruń, 1994.
[005] [6] A. Nowicki, On the non-existence of rational first integrals for systems of linear differential equations, Linear Algebra Appl. 235 (1996), 107-120. | Zbl 0843.34013
[006] [7] A. Nowicki and M. Nagata, Rings of constants for k-derivations in , J. Math. Kyoto Univ. 28 (1988), 111-118. | Zbl 0665.12024
[007] [8] A. Nowicki and J.-M. Strelcyn, Generators of rings of constants for some diagonal derivations in polynomial rings, J. Pure Appl. Algebra 101 (1995), 207-212. | Zbl 0832.12002