Front d'onde et propagation des singularités pour un vecteur-distribution
Manchon, Dominique
Colloquium Mathematicae, Tome 79 (1999), p. 161-191 / Harvested from The Polish Digital Mathematics Library

We define the wave front set of a distribution vector of a unitary representation in terms of pseudo-differential-like operators [M2] for any real Lie group G. This refines the notion of wave front set of a representation introduced by R. Howe [Hw]. We give as an application a necessary condition so that a distribution vector remains a distribution vector for the restriction of the representation to a closed subgroup H, and we give a propagation of singularities theorem for distribution vectors.

Publié le : 1999-01-01
EUDML-ID : urn:eudml:doc:210734
@article{bwmeta1.element.bwnjournal-article-cmv81i2p161bwm,
     author = {Dominique Manchon},
     title = {Front d'onde et propagation des singularit\'es pour un vecteur-distribution},
     journal = {Colloquium Mathematicae},
     volume = {79},
     year = {1999},
     pages = {161-191},
     zbl = {0978.22009},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv81i2p161bwm}
}
Manchon, Dominique. Front d'onde et propagation des singularités pour un vecteur-distribution. Colloquium Mathematicae, Tome 79 (1999) pp. 161-191. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv81i2p161bwm/

[000] [Dui] J. J. Duistermaat, Fourier Integral Operators, Courant Institute, 1973 (Rééd. Progress in Math. 130, Birkhäuser, 1995).

[001] [D-H] J. J. Duistermaat and L. Hörmander, Fourier integral operators II, Acta Math. 128 (1972), 183-269. | Zbl 0232.47055

[002] [Go] R. Goodman, Elliptic and subelliptic estimates for operators in an enveloping algebra, Duke Math. J. 47 (1980), 819-833. | Zbl 0466.35026

[003] [He] B. Helffer, Théorie spectrale pour des opérateurs globalement elliptiques, Astérisque 112 (1984). | Zbl 0541.35002

[004] [Hr1] L. Hörmander, The Weyl calculus of pseudodifferential operators, Comm. Pure Appl. Math. 32 (1979), 359-443. | Zbl 0388.47032

[005] [Hr2] L. Hörmander, The Analysis of Linear Partial Differential Operators III, Springer, 1985.

[006] [Hw] R. Howe, Wave front sets of representations of Lie groups, in: Automorphic Forms, Representation Theory and Arithmetic, Tata Inst. Fund. Res. Stud. Math. 10, Bombay, 1981, 117-140.

[007] [Jο] P. E. T. Jοrgensen, Distribution representations of Lie groups, J. Math. Anal. Appl. 65 (1978), 1-19.

[008] [M1] D. Manchon, Weyl symbolic calculus on any Lie group, Acta Appl. Math. 30 (1993), 159-186. | Zbl 0779.22005

[009] [M2] D. Manchon, Opérateurs pseudodifférentiels et représentations unitaires des groupes de Lie, Bull. Soc. Math. France 123 (1995), 117-138.

[010] [M3] D. Manchon, Formule de Weyl pour les groupes de Lie nilpotents, J. Reine Angew. Math. 418 (1991), 77-129. | Zbl 0721.22004

[011] [M4] D. Manchon, Distributions à support compact et représentations unitaires, J. Lie Theory, à paraître.

[012] [Me1] A. Melin, A remark on invariant pseudo-differential operators, Math. Scand. 30 (1972), 290-296. | Zbl 0258.22013

[013] [Me2] A. Melin, Parametrix constructions for right invariant differential operators on nilpotent groups, Ann. Global Anal. Geom. 1 (1983), 79-130. | Zbl 0524.58044

[014] [Ne] E. Nelson, Analytic vectors, Ann. of Math. 70 (1959), 572-615. | Zbl 0091.10704

[015] [S] R. T. Seeley, Complex powers of an elliptic operator, in: Singular Integrals, Proc. Sympos. Pure Math. 10, Amer. Math. Soc., 1967, 288-307. | Zbl 0159.15504

[016] [Shu] M. A. Shubin, Pseudodifferential Operators and Spectral Theory, Springer, 1987.

[017] [St] R. S. Strichartz, A functional calculus for elliptic pseudo-differential operators, Amer. J. Math. 94 (1972), 711-722. | Zbl 0246.35082

[018] [Stk] H. Stetkæ r, Invariant pseudo-differential operators, Math. Scand. 28 (1971), 105-123.

[019] [T] M. E. Taylor, Pseudodifferential Operators, Princeton Univ. Press, 1981