Mark Kac gave an example of a function f on the unit interval such that f cannot be written as f(t)=g(2t)-g(t) with an integrable function g, but the limiting variance of vanishes. It is proved that there is no measurable g such that f(t)=g(2t)-g(t). It is also proved that there is a non-measurable g which satisfies this equality.
@article{bwmeta1.element.bwnjournal-article-cmv81i2p157bwm, author = {Katusi Fukuyama}, title = {On a gap series of Mark Kac}, journal = {Colloquium Mathematicae}, volume = {79}, year = {1999}, pages = {157-160}, zbl = {0946.60018}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv81i2p157bwm} }
Fukuyama, Katusi. On a gap series of Mark Kac. Colloquium Mathematicae, Tome 79 (1999) pp. 157-160. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv81i2p157bwm/
[000] [1] R. Fortet, Sur une suite également répartie, Studia Math. 9 (1940), 54-69. | Zbl 66.1298.01
[001] [2] K. Fukuyama, The central limit theorem for Riesz-Raikov sums, Probab. Theory Related Fields 100 (1994), 57-75. | Zbl 0803.60021
[002] [3] M. Kac, On the distribution of values of sums of the type , Ann. of Math. 47 (1946), 33-49. | Zbl 0063.03091
[003] [4] R. Salem and A. Zygmund, On lacunary trigonometric series II, Proc. Nat. Acad. Sci. U.S.A. 34 (1948), 54-62. | Zbl 0029.35601