We give an equational description of all idempotent groupoids with at most three essentially n-ary term operations.
@article{bwmeta1.element.bwnjournal-article-cmv81i1p63bwm, author = {J. Ga\l uszka}, title = {Varieties of idempotent groupoids with small clones}, journal = {Colloquium Mathematicae}, volume = {79}, year = {1999}, pages = {63-87}, zbl = {0953.20052}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv81i1p63bwm} }
Gałuszka, J. Varieties of idempotent groupoids with small clones. Colloquium Mathematicae, Tome 79 (1999) pp. 63-87. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv81i1p63bwm/
[000] [1] J. Berman, Free spectra of 3-element algebras, in: Universal Algebra and Lattice Theory (Puebla, 1982), Lecture Notes in Math. 1004, Springer, Berlin, 1983, 10-53.
[001] [2] B. Csákány, All minimal clones on the three-element set, Acta Cybernet. 6 (1983), 227-238. | Zbl 0537.08002
[002] [3] B. Csákány, On affine spaces over prime fields, Acta Sci. Math. (Szeged) 37 (1975), 33-36.
[003] [4] J. Dudek, Another unique minimal clone, to appear. | Zbl 0713.08002
[004] [5] J. Dudek, On binary polynomials in idempotent commutative groupoids, Fund. Math. 120 (1984), 187-191. | Zbl 0555.20035
[005] [6] J. Dudek, On minimal extension of sequences, Algebra Universalis 23 (1986), 308-312. | Zbl 0627.08001
[006] [7] J. Dudek, On varieties of groupoid modes, Demonstratio Math. 27 (1994), 815-828. | Zbl 0835.08003
[007] [8] J. Dudek, Small idempotent clones I, Czechoslovak Math. J. 48 (1998), 105-118. | Zbl 0931.20055
[008] [9] J. Dudek, The minimal extension of the sequence (0,0,3), Algebra Universalis 29 (1992), 419-436. | Zbl 0788.08003
[009] [10] J. Dudek, The unique minimal clone with three essentially binary operation, ibid. 27 (1990), 261-269. | Zbl 0713.08002
[010] [11] J. Dudek, Varieties of idempotent commutative groupoids, Fund. Math. 120 (1984), 193-204. | Zbl 0546.20049
[011] [12] G. Grätzer, Composition of functions, in: Proc. Conf. on Universal Algebra (Kingston, Ont., 1969), Queen's University, Kingston, Ont., 1970, 1-106.
[012] [13] G. Grätzer, Universal Algebra, Springer, Berlin, 1979.
[013] [14] G. Grätzer and A. Kisielewicz, A survey of some open problems on -sequences and free spectra of algebras and varieties, in: Universal Algebra and Quasigroup Theory, A. Romanowska and J. D. H. Smith (eds.), Heldermann, Berlin, 1992, 57-88. | Zbl 0772.08001
[014] [15] G. Grätzer and R. Padmanabhan, On idempotent, commutative and nonassociative groupoids, Proc. Amer. Math. Soc. 28 (1971), 75-80. | Zbl 0215.34501
[015] [16] A. Kisielewicz, On idempotent algebra with , Algebra Universalis 23 (1981), 313-323. | Zbl 0621.08002
[016] [17] A. Kisielewicz, Characterization of -sequences for nonidempotent algebras, J. Algebra 108 (1987), 102-115. | Zbl 0614.08002
[017] [18] E. Marczewski, Independence and homomorphisms in abstract algebras, Fund. Math. 50 (1961), 45-61. | Zbl 0104.25501
[018] [19] P. P. Pálfy, Minimal clones, Preprint No. 27/1984, Math. Inst. Hungar. Acad. Sci.
[019] [20] J. Płonka, On algebras with at most n distinct n-ary operations, Algebra Universalis 1 (1971), 80-85. | Zbl 0219.08007
[020] [21] J. Płonka, On equational classes of abstract algebras defined by regular equations, Fund. Math. 64 (1969), 241-247. | Zbl 0187.28702
[021] [22] W. Sierpiński, Sur les fonctions de plusieurs variables, ibid. 33 (1945), 169-173. | Zbl 0060.13111