Killing tensors and Einstein-Weyl geometry
Jelonek, Włodzimierz
Colloquium Mathematicae, Tome 79 (1999), p. 5-19 / Harvested from The Polish Digital Mathematics Library

We give a description of compact Einstein-Weyl manifolds in terms of Killing tensors.

Publié le : 1999-01-01
EUDML-ID : urn:eudml:doc:210730
@article{bwmeta1.element.bwnjournal-article-cmv81i1p5bwm,
     author = {W\l odzimierz Jelonek},
     title = {Killing tensors and Einstein-Weyl geometry},
     journal = {Colloquium Mathematicae},
     volume = {79},
     year = {1999},
     pages = {5-19},
     zbl = {0945.53028},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv81i1p5bwm}
}
Jelonek, Włodzimierz. Killing tensors and Einstein-Weyl geometry. Colloquium Mathematicae, Tome 79 (1999) pp. 5-19. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv81i1p5bwm/

[000] [1] A. Besse, Einstein Manifolds, Springer, Berlin, 1987.

[001] [2] A. Derdziński, Classification of certain compact Riemannian manifolds with harmonic curvature and non-parallel Ricci tensor, Math. Z. 172 (1980), 273-280. | Zbl 0453.53037

[002] [3] P. Gauduchon, Structures de Weyl-Einstein, espaces de twisteurs et variétés de type S1×S3, J. Reine Angew. Math. 469 (1995), 1-50.

[003] [4] P. Gauduchon, Structures de Weyl et théorèmes d'annulation sur une variété conforme autoduale, Ann. Scoula Norm. Sup. Pisa Cl. Sci. (4) 18 (1991), 563-629. | Zbl 0763.53034

[004] [5] P. Gauduchon, La 1-forme de torsion d'une variété hermitienne compacte, Math. Ann. 267 (1984), 495-518. | Zbl 0523.53059

[005] [6] A. Gray, Einstein-like manifolds which are not Einstein, Geom. Dedicata 7 (1978), 259-280. | Zbl 0378.53018

[006] [7] W. Jelonek, On A-tensors in Riemannian geometry, preprint 551, Inst. Math., Polish Acad. Sci., 1995.

[007] [8] B. Madsen, H. Pedersen, Y. Poon and A. Swann, Compact Einstein-Weyl manifolds with large symmetry group, Duke Math. J. 88 (1997), 407-434. | Zbl 0881.53041

[008]

[009] [10] H. Pedersen and A. Swann, Einstein-Weyl geometry, the Bach tensor and conformal scalar curvature, J. Reine Angew. Math. 441 (1993), 99-113. | Zbl 0776.53027