Invariants and flow geometry
González-Dávila, J. ; Vanhecke, L.
Colloquium Mathematicae, Tome 79 (1999), p. 33-50 / Harvested from The Polish Digital Mathematics Library

We continue the study of Riemannian manifolds (M,g) equipped with an isometric flow ξ generated by a unit Killing vector field ξ. We derive some new results for normal and contact flows and use invariants with respect to the group of ξ-preserving isometries to charaterize special (M,g,ξ), in particular Einstein, η-Einstein, η-parallel and locally Killing-transversally symmetric spaces. Furthermore, we introduce curvature homogeneous flows and flow model spaces and derive an algebraic characterization of Killing-transversally symmetric spaces by using the curvature tensor of special flow model spaces. All these results extend the corresponding theory in Sasakian geometry to flow geometry.

Publié le : 1999-01-01
EUDML-ID : urn:eudml:doc:210728
@article{bwmeta1.element.bwnjournal-article-cmv81i1p33bwm,
     author = {J. Gonz\'alez-D\'avila and L. Vanhecke},
     title = {Invariants and flow geometry},
     journal = {Colloquium Mathematicae},
     volume = {79},
     year = {1999},
     pages = {33-50},
     zbl = {0936.53030},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv81i1p33bwm}
}
González-Dávila, J.; Vanhecke, L. Invariants and flow geometry. Colloquium Mathematicae, Tome 79 (1999) pp. 33-50. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv81i1p33bwm/

[000] [1] A. L. Besse, Einstein Manifolds, Ergeb. Math. Grenzgeb. (3) 10, Springer, Berlin, 1987.

[001] [2] B D. E. Blair, Contact Manifolds in Riemannian Geometry, Lecture Notes in Math. 509, Springer, Berlin, 1976. | Zbl 0319.53026

[002] [3] D. E. Blair and L. Vanhecke, Symmetries and φ-symmetric spaces, Tôhoku Math. J. 39 (1987), 373-383. | Zbl 0632.53039

[003] [4] E. Boeckx, O. Kowalski and L. Vanhecke, Riemannian Manifolds of Conullity Two, World Scientific, Singapore, 1996. | Zbl 0904.53006

[004] [5] P. Bueken, Reflections and rotations in contact geometry, doctoral dissertation, Katholieke Universiteit Leuven, 1992.

[005] [6] P. Bueken and L. Vanhecke, Algebraic characterizations by means of the curvature in contact geometry, in: Proc. III Internat. Sympos. Diff. Geom., Pe níscola, Lecture Notes in Math. 1410, Springer, Berlin, 1988, 77-86. | Zbl 0689.53021

[006] [7] P. Bueken and L. Vanhecke, Curvature characterizations in contact geometry, Riv. Mat. Univ. Parma 14 (1988), 303-313. | Zbl 0689.53021

[007] [8] B. Y. Chen and L. Vanhecke, Differential geometry of geodesic spheres, J. Reine Angew. Math. 325 (1981), 28-67.

[008] [9] J. C. González-Dávila, M. C. González-Dávila and L. Vanhecke, Reflections and isometric flows, Kyungpook Math. J. 35 (1995), 113-144. | Zbl 0839.53017

[009] [10] J. C. González-Dávila, M. C. González-Dávila and L. Vanhecke, Classification of Killing-transversally symmetric spaces, Tsukuba J. Math. 20 (1996), 321-347. | Zbl 0890.53037

[010] [11] J. C. González-Dávila, M. C. González-Dávila and L. Vanhecke, Normal flow space forms and their classification, Publ. Math. Debrecen 48 (1996), 151-173. | Zbl 0859.53016

[011] [12] J. C. González-Dávila and L. Vanhecke, Geodesic spheres and isometric flows, Colloq. Math. 67 (1994), 223-240. | Zbl 0827.53040

[012] [13] J. C. González-Dávila and L. Vanhecke, D'Atri spaces and C-spaces in flow geometry, Indian J. Pure Appl. Math. 29 (1998), 487-499. | Zbl 0912.53023

[013] [14] A. Gray and L. Vanhecke, Riemannian geometry as determined by the volumes of small geodesic balls, Acta Math. 142 (1979), 157-198. | Zbl 0428.53017

[014] [15] D. Janssens and L. Vanhecke, Almost contact structures and curvature tensors, Kodai Math. J. 4 (1981), 1-27. | Zbl 0472.53043

[015] [16] O. Kowalski, F. Prüfer and L. Vanhecke, D'Atri spaces, in: Topics in Geometry: In Memory of Joseph D'Atri, S. Gindikin (ed.), Progr. Nonlinear Differential Equations, 20, Birkhäuser, Boston, 1996, 241-284. | Zbl 0862.53039

[016] [17] O B. O'Neill, The fundamental equation of a submersion, Michigan Math. J. 13 (1966), 459-469.

[017] [18] Y. Shibuya, The spectrum of Sasakian manifolds, Kodai Math. J. 3 (1980), 197-211. | Zbl 0436.53048

[018] [19] Y. Shibuya, Some isospectral problems, ibid. 5 (1982), 1-12. | Zbl 0488.53034

[019] [20] I. M. Singer, Infinitesimally homogeneous spaces, Comm. Pure Appl. Math. 13 (1960), 685-697. | Zbl 0171.42503

[020] [21] T T. Takahashi, Sasakian φ-symmetric spaces, Tôhoku Math. J. 29 (1977), 91-113. | Zbl 0343.53030

[021] [22] Ph. Tondeur, Foliations on Riemannian Manifolds, Universitext, Springer, Berlin, 1988.

[022] [23] Ph. Tondeur and L. Vanhecke, Transversally symmetric Riemannian foliations, Tôhoku Math. J. 42 (1990), 307-317. | Zbl 0718.53022

[023] [24] F. Tricerri and L. Vanhecke, Decomposition of a space of curvature tensors on a quaternionic Kähler manifold and spectrum theory, Simon Stevin 53 (1979), 163-173. | Zbl 0409.53034

[024] [25] F. Tricerri and L. Vanhecke, Curvature tensors on almost Hermitian manifolds, Trans. Amer. Math. Soc. 267 (1981), 365-398. | Zbl 0484.53014

[025] [26] F. Tricerri and L. Vanhecke, Variétés riemanniennes dont le tenseur de courbure est celui d'un espace symétrique irréductible, C. R. Acad. Sci. Paris Sér. I 302 (1986), 233-235. | Zbl 0585.53043

[026] [27] L. Vanhecke, Scalar curvature invariants and local homogeneity, Rend. Circ. Mat. Palermo (2) Suppl. 49 (1997), 275-287. | Zbl 0894.53046

[027] [28] Y. Watanabe, Geodesic symmetries in Sasakian locally φ-symmetric spaces, Kodai Math. J. 3 (1980), 48-55.

[028] [29] K. Yano and S. Ishihara, Fibred spaces with invariant Riemannian metric, Kōdai Math. Sem. Rep. 19 (1967), 317-360. | Zbl 0156.42501

[029] [30] K. Yano and M. Kon, Structures on Manifolds, Ser. Pure Math. 3, World Scientific, Singapore, 1984.